蛋白质翻译后修饰的重要性:翻译后修饰可以发生在蛋白质生命周期的任何阶段。例如,许多蛋白质在翻译完成后不久就被修饰,以介导适当的蛋白质折叠或稳定,或将新生蛋白质引导到不同的细胞区室(例如,细胞核、膜)。折叠和定位完成后发生其他修饰,以刺激或灭活催化活性或以其他方...
蛋白质组学:常用技术:靶向蛋白组(PRM靶向蛋白/肽段定量),修饰蛋白组学(定量磷酸化修饰组学、定量糖基化修饰蛋白组学、定量乙酰化修饰蛋白组学和定量泛素化修饰蛋白组学),互作蛋白组学(代谢物与蛋白互作研究)。什么样本能做蛋白组学检测?大概可以测到多少的蛋白种类...
蛋白质翻译后修饰组学:翻译后修饰(Post-translational modification, PTM)是指对翻译后的蛋白质进行共价加工的过程。它通过在一个或多个氨基酸残基加上修饰基团,可以改变蛋白质的物理、化学性质,进而影响蛋白质的空间构象和活性状态、亚...
甲基化修饰蛋白质组学技术应用领域:基础医学、临床诊断:生物标志物,疾病机理机制,疾病分型,个性化治理等;生物医药:药物作用机理,药效评价,药物开发等;农林领域:抗逆胁迫机制,生长发育机制,育种保护研究等;畜牧业:肉类及乳品质研究,致病机理研究等;微生物领域:致...
磷酸化修饰蛋白质组学:在有机体内,磷酸化是蛋白翻译后修饰中比较普遍的共价修饰形式,同时也是原核生物和真核生物中比较重要的调控修饰形式。磷酸化对蛋白质功能的正常发挥起着重要的调节作用,该过程是由蛋白质激酶(Kinase)催化的把ATP或GTP的γ位磷酸基转移到底...
代谢组学有哪些特点?(1) 代谢处于系统生物学的末端,更能反映基因与外部环境互作的真实情况,因此,在多数生物表型研究上更加适用。(2) 常规代谢组学只关注内源性化合物,也有使用代谢组学技术测定外源性化合物的。内源性化合物的上调和下调指示了与疾病、毒性、基因修饰...
蛋白质组学在医学的研究应用:蛋白质组学(Proteomics)是研究细胞、组织或生物体中蛋白质组成、定位、变化及其相互作用规律的科学,包括对蛋白质表达模式和蛋白质组功能模式的研究。蛋白质组学的发展对寻找疾病的诊断标志、筛选药物靶点、毒理学研究等有重要意义,也因...
翻译后修饰蛋白组分析:蛋白质翻译后修饰(PTMs)是指蛋白质在翻译中或翻译后的化学修饰过程。蛋白质翻译后修饰(PTMs)通过给蛋白质添加磷酸酯、乙酸酯、酰胺基或甲基等官能团增加蛋白质组的功能多样性,并影响正常细胞生物学和发病机理的几乎所有方面。蛋白质翻译后修饰...
定量蛋白质组学的方法学背景和意义:从生命活动的直接执行者——蛋白质的角度研究生命现象和规律(特别是疾病防治和病理研究)已成为研究生命科学的主要手段。而这些研究往往离不开对细胞、组织中含有蛋白质种类和表达量的研究。对处不同时期、不同条件下蛋白质表达水平变化的研究...
代谢组学什么类型的样本更适合,样本采集需要注意什么?绝大多数可以可靠收集的生物样本都适用于代谢组学研究。常见的样本主要有:临床和动物的血清、血浆、尿液、粪便、各类组织、体液;细胞和微生物、培养液和发酵液;植物的根、茎、叶、花等。代谢每时每刻都在发生变化,我们需...
蛋白质乙酰化修饰组学技术服务:乙酰化修饰是体内高度保守的可逆转的蛋白修饰,对细胞核内转录调控因子的刺激有着非常重要的作用。此外,还存在大量的非组蛋白乙酰化修饰参与了代谢通路及代谢酶活性的调节。乙酰化修饰组学技术服务采用肽段预分离降低高丰度组蛋白对蛋白乙酰化鉴定...
常用的定量蛋白质组学技术方法有以下几类:非标记(labelfree)的定量蛋白组学技术:Label free定量蛋白组学技术是通过液质联用技术对蛋白质酶解肽段进行质谱分析,无需使用昂贵的稳定同位素标签做内部标准,只需分析大规模鉴定蛋白质时所产生的质谱数据,比较...
甲基化修饰蛋白质组学技术应用领域:基础医学、临床诊断:生物标志物,疾病机理机制,疾病分型,个性化治理等;生物医药:药物作用机理,药效评价,药物开发等;农林领域:抗逆胁迫机制,生长发育机制,育种保护研究等;畜牧业:肉类及乳品质研究,致病机理研究等;微生物领域:致...
RNA-Seq转录组学的应用:RNA-Seq即对转录组进行测序和分析。一般来说在研究所会委托公司测序得到数据自己进行后续的生信分析(质控,mapping,差异基因表达分析,SNV分析等)。RNA-Seq有着巨大的应用前景。在不同背景下比较mRNA水平同一物种,...
泛素化修饰蛋白质组学:泛素是一种由76个氨基酸组成的多肽,在真核生物中高度保守,可通过异肽键与目标蛋白赖氨酸残基的氨基进行共价连接。泛素化蛋白的富集主要基于标记,泛素用亲和标签(通常为6xHis)进行标记,并通过镍螯合色谱亲和提取泛素化蛋白。由于泛素的C端为A...
泛素化修饰PRM定量验证:原理: 泛素化修饰是一种重要的翻译后修饰。泛素-蛋白酶体系统介导了真核生物体内80%~85%的蛋白质降解。此外,泛素化修饰还可以直接影响蛋白质的活性和定位,调控包括细胞周期、细胞凋亡、转录调控、DNA 损伤修复以及免疫应答等在内的多种...
定量磷酸化蛋白质翻译修饰组学:蛋白质发生磷酸化是重要的翻译后修饰,它与信号传导、细胞周期、生长发育机理等诸多生物学问题有密切关系。研究蛋白质磷酸化对阐明蛋白质功能具有重要意义。将磷酸化肽段TiO2富集技术和iTRAQ/TMT/Lable free技术相结合,实...
蛋白质翻译后修饰:蛋白质翻译后修饰 (Protein translational modifications,PTMs) 通过功能基团或蛋白质的共价添加、调节亚基的蛋白水解切割或整个蛋白质的降解来增加蛋白质组的功能多样性。这些修饰包括磷酸化、糖基化、泛素化、亚...
宏转录组学也称为环境转录组学,指从整体水平上研究某一特定环境、特定时期菌群群体全部基因转录情况以及转录调控规律,以揭示微生物在不同环境压力下的适应机制,探索环境与微生物之间的相互作用机理。其适用范围包括人体微生态、环境、工业、农业等领域。宏转录组学以生态环境中...
糖基化修饰蛋白质组学:蛋白质的糖基化具有异质性。不同的糖链可以连接到同一位点上,不同位点可以连接到同一蛋白质上的不同糖链上。糖基化的异质性严重阻碍了糖蛋白的分离和分析。不同糖类型的相同蛋白质,在电泳上会出现分散的条带,导致信号分散。此外,对低丰度蛋白质的识别性...
翻译后修饰蛋白组分析:蛋白质翻译后修饰是影响蛋白质功能并调节整个细胞过程的重要方式,几乎在每个细胞过程中都是不可或缺的。分析和鉴定翻译后修饰蛋白质对揭示蛋白质的功能和深入了解各种生理现象具有重要意义。大多数翻译后修饰蛋白以低化学计量和丰度存在,这限制了在分析全...
代谢组学适用范围:1、体液:血清、血浆、尿液、唾液、膝盖滑液、脑脊液、卵泡液、牛奶、痰液、舌苔液、胆汁等。2、组织:各种动物组织和植物组织。3、细胞:细胞及细胞培养液等。3、微生物:大肠杆菌、链球菌等。4、其他:粪便、食糜、肠道内容物等。应用领域:1、非靶向代...
蛋白质组学发展趋势:技术发展方面:蛋白质组学的研究方法将出现多种技术并存,各有优势和的特点,而难以象基因组研究一样形成比较一致的方法。除了发展新方法外,更强调各种方法间的整合和互补,以适应不同蛋白质的不同特征。另外,蛋白质组学与其它学科的交叉也将日益明显和重要...
代谢组学的概念:代谢组学的概念来源于代谢组,代谢组是指某一生物或细胞在一特定生理时期内所有的低分子量代谢产物,代谢组学则是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。它是以组群指标分析为基础,以高通量检测和数据处理...
蛋白质翻译后修饰在蛋白质中磷酸化位点分析时应该注意些什么问题?覆盖率:覆盖率越高,检测和鉴定含有修饰基团的肽几率就越大。修饰位点的占有率:被修饰的蛋白质的百分比低,则检测到修饰肽的机会会随之减少。如果百分比较高(> 30%),则有助于识别修饰位点。棕榈酰化蛋白...
iTRAQ定量蛋白组学技术:iTRAQ(Isobaric Tag for Relative Absolute Quantitation)定量蛋白质组学技术多肽体外标记定量技术。这种技术同TMT定量蛋白组学技术相似,可研究不同病理条件下或者不同发育阶段的组织样品...
单细胞RNA-seq转录组学工作流程:单细胞RNA测序等高通量单细胞转录组学技术通常从针对不同瘤和组织类型(解离、分选和分离细胞等)量身定制的实验工作流程开始,然后产生可以比对的序列,量化、质量控制(QC)过滤和以不同方式标准化,以实现许多下游计算分析,例如聚...
蛋白质组学研究内容:1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合相关技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究。2.翻译后修饰:很多mRNA表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原刺激等。翻译后修饰是蛋白质调节功能的...
转录组测序推荐的测序数据量?转录组测序所需数据量与所研究物种的基因组大小有关,基因组越大,则所需数据量越大。按照我们的经验来说:常规物种一般建议6G数据即可;基因组较大的物种推荐8G以上数据,比如:小麦建议10G数据起,甘蔗、甘薯建议至少8G数据。转录组测序必...
非靶向代谢组学:非靶向代谢组学可用于检测生物体内大多数小分子代谢物的动态变化,通过数据处理,多维统计和数学建模来分析生物扰动下的代谢指纹图谱。寻找两组间发生明显变化的差异代谢物,富集差异代谢通路, 获得整个生物体的代谢轮廓。 技术优势: 1、代谢组学能放大基因...