在半导体芯片的精密检测领域,微光显微镜与热红外显微镜如同两把功能各异的 “利剑”,各自凭借独特的技术原理与应用优势,在芯片质量管控与失效分析中发挥着不可替代的作用。二者虽同服务于芯片检测,但在逻辑与适用场景上的差异,使其成为互补而非替代的检测组合。从技术原理来看,两者的 “探测语言” 截然不同。
微光显微镜是 “光子的捕捉者”,其重心在于高灵敏度的光子传感器,能够捕捉芯片内部因电性能异常释放的微弱光信号 —— 这些信号可能来自 PN 结漏电时的电子跃迁,或是栅氧击穿瞬间的能量释放,波长多集中在可见光至近红外范围。
在航空航天芯片检测中,它可定位因辐射导致的芯片损伤,为航天器电子设备的稳定运行保驾护航。显微微光显微镜成像仪
致晟光电作为专注于微光显微镜与热红外显微镜应用的技术团队,设备在微小目标定位、热分布成像等场景中具备高分辨率优势,可广泛应用于芯片、PCB板、显示屏等消费电子元器件的检测环节,为您提供客观的物理位置或热分布定位数据。
为让您更直观了解设备的定位精度与适用性,我们诚挚邀请贵单位参与样品测试合作:若您有需要进行微光定位(如细微结构位置标记、表面瑕疵定位)或热红外定位(如元器件发热点分布、温度梯度成像)的样品,可邮寄至我方实验室。我们将提供专业检测服务,输出包含图像、坐标、数值等在内的定位数据报告(注:报告呈现客观检测结果,不做定性或定量结论判断)。测试过程中,我们会根据您的需求调整检测参数,确保定位数据贴合实际应用场景。若您对设备的定位效果认可,可进一步洽谈设备采购或长期检测服务合作。 什么是微光显微镜品牌排行微光显微镜的便携款桌面级设计,方便在生产线现场快速检测,及时发现产品问题,减少不合格品流出。
对半导体研发工程师而言,排查的过程层层受阻。在逐一排除外围电路异常、生产工艺制程损伤等潜在因素后,若仍未找到症结,往往需要芯片原厂介入,通过剖片分析深入探究内核。
然而,受限于专业分析设备的缺乏,再加上芯片内部设计涉及机密,工程师难以深入了解其底层构造,这就导致他们在面对原厂出具的分析报告时,常常陷入 “被动接受” 的局面 —— 既无法完全验证报告的细节,也难以基于自身判断提出更具针对性的疑问或补充分析方向。
光束诱导电阻变化(OBIRCH)功能与微光显微镜(EMMI)技术常被集成于同一检测系统,合称为光发射显微镜(PEM,PhotoEmissionMicroscope)。
二者在原理与应用上形成巧妙互补,能够协同应对集成电路中绝大多数失效模式,大幅提升失效分析的全面性与效率。OBIRCH技术的独特优势在于,即便失效点被金属层覆盖形成“热点”,其仍能通过光束照射引发的电阻变化特性实现精细检测——这恰好弥补了EMMI在金属遮挡区域光信号捕捉受限的不足。
通过调节探测灵敏度,它能适配不同漏电流大小的检测需求,灵活应对多样的检测场景。
定位短路故障点短路是造成芯片失效的关键诱因之一。
当芯片内部电路发生短路时,短路区域会形成异常电流通路,引发局部温度骤升,并伴随特定波长的光发射现象。EMMI(微光显微镜)凭借其超高灵敏度,能够捕捉这些由短路产生的微弱光信号,再通过对光信号的强度分布、空间位置等特征进行综合分析,可实现对短路故障点的精确定位。
以一款高性能微处理器芯片为例,其在测试中出现不明原因的功耗激增问题,技术人员初步判断为内部电路存在短路隐患。通过EMMI对芯片进行全域扫描检测,在极短时间内便在芯片的某一特定功能模块区域发现了光发射信号。结合该芯片的电路设计图纸和版图信息进行深入分析,终锁定故障点为两条相邻的铝金属布线之间因绝缘层破损而发生的短路。这一定位为后续的故障修复和工艺改进提供了直接依据。 支持离线数据分析,可将检测图像导出后进行深入处理,不占用设备的实时检测时间。制冷微光显微镜内容
微光显微镜支持宽光谱探测模式,探测范围从紫外延伸至近红外,能满足不同材料的光子检测,适用范围更广。显微微光显微镜成像仪
半导体材料分为直接带隙半导体和间接带隙半导体,而Si是典型的直接带隙半导体,其禁带宽度为1.12eV。所以当电子与空穴复合时,电子会弹射出一个光子,该光子的能量为1.12eV,根据波粒二象性原理,该光子的波长为1100nm,属于红外光区。通俗的讲就是当载流子进行复合的时候就会产生1100nm的红外光。这也就是产生亮点的原因之一:载流子复合。所以正偏二极管的PN结处能看到亮点。如果MOS管产生latch-up现象,(体寄生三极管导通)也会观察到在衬底处产生荧光亮点。显微微光显微镜成像仪