芯片制造工艺复杂精密,从设计到量产的每一个环节都可能潜藏缺陷,而失效分析作为测试流程的重要一环,是拦截不合格产品、追溯问题根源的 “守门人”。微光显微镜凭借其高灵敏度的光子探测技术,能够捕捉到芯片内部因漏电、热失控等故障产生的微弱发光信号,定位微米级甚至纳米级的缺陷。这种检测能力,能帮助企业快速锁定问题所在 —— 无论是设计环节的逻辑漏洞,还是制造过程中的材料杂质、工艺偏差,都能被及时发现。这意味着企业可以针对性地优化生产工艺、改进设计方案,从而提升芯片良率。在当前芯片制造成本居高不下的背景下,良率的提升直接转化为生产成本的降低,让企业在价格竞争中占据更有利的位置。微光显微镜的快速预热功能,可缩短设备启动至正常工作的时间,提高检测效率。检测用微光显微镜
半导体企业购入微光显微镜设备,是提升自身竞争力的关键举措,原因在于芯片测试需要找到问题点 —— 失效分析。失效分析能定位芯片设计缺陷、制造瑕疵或可靠性问题,直接决定产品良率与市场口碑。微光显微镜凭借高灵敏度的光子探测能力,可捕捉芯片内部微弱发光信号,高效识别漏电、热失控等隐性故障,为优化生产工艺、提升芯片性能提供关键数据支撑。在激烈的市场竞争中,快速完成失效分析意味着缩短研发周期、降低返工成本,同时通过提升产品可靠性巩固客户信任,这正是半导体企业在技术迭代与市场争夺中保持优势的逻辑。检测用微光显微镜微光显微镜分析 3D 封装器件光子,结合光学原理和算法可预估失效点深度,为失效分析和修复提供参考。
同时,微光显微镜(EMMI)带来的高效失效分析能力,能大幅缩短研发周期。在新产品研发阶段,快速发现并解决失效问题,可避免研发过程中的反复试错,加快产品从实验室走向市场的速度。当市场需求瞬息万变时,更快的研发响应速度意味着企业能抢先推出符合市场需求的产品,抢占市场先机。例如,在当下市场 5G 芯片、AI 芯片等领域,技术迭代速度极快,谁能更早解决研发中的失效难题,谁就能在技术竞争中争先一步,建立起差异化的竞争优势。
随着器件尺寸的逐渐变小,MOS器件的沟道长度也逐渐变短。短沟道效应也愈发严重。短沟道效应会使得MOS管的漏结存在一个强电场,该电场会对载流子进行加速,同时赋予载流子一个动能,该载流子会造成中性的Si原子被极化,产生同样带有能量的电子与空穴对,这种电子与空穴被称为热载流子,反映在能带图中就是电位更高的电子和电位更低的空穴。一部分热载流子会在生成后立马复合,产生波长更短的荧光,另一部分在电场的作用下分离。电子进入栅氧层,影响阈值电压,空穴进入衬底,产生衬底电流。归因于短沟道效应能在MOS管的漏端能看到亮点,同样在反偏PN结处也能产生强场,也能观察到亮点。其低噪声电缆连接设计,减少信号传输过程中的损耗,确保微弱光子信号完整传递至探测器。
光束诱导电阻变化(OBIRCH)功能与微光显微镜(EMMI)技术常被集成于同一检测系统,合称为光发射显微镜(PEM,PhotoEmissionMicroscope)。
二者在原理与应用上形成巧妙互补,能够协同应对集成电路中绝大多数失效模式,大幅提升失效分析的全面性与效率。OBIRCH技术的独特优势在于,即便失效点被金属层覆盖形成“热点”,其仍能通过光束照射引发的电阻变化特性实现精细检测——这恰好弥补了EMMI在金属遮挡区域光信号捕捉受限的不足。
当二极管处于正向偏置或反向击穿状态时,会有强烈的光子发射,形成明显亮点。厂家微光显微镜批量定制
介电层漏电时,微光显微镜可检测其光子定位位置,保障电子器件绝缘结构可靠,防止电路故障。检测用微光显微镜
EMMI的本质只是一台光谱范围广,光子灵敏度高的显微镜。
但是为什么EMMI能够应用于IC的失效分析呢?
原因就在于集成电路在通电后会出现三种情况:1.载流子复合;2.热载流子;3.绝缘层漏电。当这三种情况发生时集成电路上就会产生微弱的荧光,这时EMMI就能捕获这些微弱荧光,这就给了EMMI一个应用的机会而在IC的失效分析中,我们给予失效点一个偏压产生荧光,然后EMMI捕获电流中产生的微弱荧光。原理上,不管IC是否存在缺陷,只要满足其机理在EMMI下都能观测到荧光 检测用微光显微镜