热红外显微镜能高效检测微尺度半导体电路及MEMS器件的热问题。在电路检测方面,这套热成像显微镜可用于电路板失效分析,且配备了电路板检测用软件包“模型比较”,能识别缺陷元件;同时还可搭载“缺陷寻找”软件模块,专门探测不易发现的短路问题并定位短路点。在MEMS研发领域,空间温度分布与热响应时间是微反应器、微型热交换器、微驱动器、微传感器等MEMS器件的关键参数。目前,非接触式测量MEMS器件温度的方法仍存在局限,而红外成像显微镜可提供20微米空间分辨率的热分布图像,是迄今为止测量MEMS器件热分布的高效工具。
热红外显微镜能够探测到亚微米级别的热异常,检测精度极高 。直销热红外显微镜选购指南
热红外显微镜(Thermal EMMI) 作为一种能够捕捉微观尺度热辐射信号的精密仪器,其优势在于对材料、器件局部温度分布的高空间分辨率观测。
然而,在面对微弱热信号(如纳米尺度结构的热辐射、低功耗器件的散热特性等)时,传统热成像方法易受环境噪声、背景辐射的干扰,难以实现精细测量。锁相热成像技术的引入,为热红外显微镜突破这一局限提供了关键解决方案。通过锁相热成像技术的赋能,热红外显微镜从 “可见” 微观热分布升级为 “可测” 纳米级热特性,为微观尺度热科学研究与工业检测提供了不可或缺的工具。 锁相热红外显微镜探测器芯片复杂度提升对缺陷定位技术的精度与灵敏度提出更高要求。
热红外显微镜和红外显微镜并非同一事物,二者是包含与被包含的关系。红外显微镜是个广义概念,涵盖利用0.75-1000微米红外光进行分析的设备,依波长分近、中、远红外等,通过样品对红外光的吸收、反射等特性分析化学成分,比如识别材料中的官能团,应用于材料科学、生物学等领域。而热红外显微镜是其分支,专注7-14微米的热红外波段,无需外部光源,直接探测样品自身的热辐射,依据黑体辐射定律生成温度分布图像,主要用于研究温度分布与热特性,像定位电子芯片的热点、分析复合材料热传导均匀性等。前者侧重成分分析,后者聚焦热特性研究。
在国内失效分析设备领域,专注于原厂研发与生产的企业数量相对较少,尤其在热红外检测这类高精度细分领域,具备自主技术积累的原厂更为稀缺。这一现状既源于技术门槛 —— 需融合光学、红外探测、信号处理等多学科技术,也受限于市场需求的专业化程度,导致多数企业倾向于代理或集成方案。
致晟光电正是国内少数深耕该领域的原厂之一。不同于单纯的设备组装,其从中枢技术迭代入手,在传统热发射显微镜基础上进化出热红外显微镜,形成从光学系统设计、信号算法研发到整机制造的完整能力。这种原厂基因使其能深度理解国内半导体、材料等行业的失效分析需求,例如针对先进制程芯片的微小热信号检测、国产新材料的热特性研究等场景,提供更贴合实际应用的设备与技术支持,成为本土失效分析领域不可忽视的自主力量。 在半导体制造中,通过逐点热扫描筛选热特性不一致的晶圆,提升良率。
致晟光电在推动产学研一体化进程中,积极开展校企合作。公司依托南京理工大学光电技术学院,专注开发基于微弱光电信号分析的产品及应用。双方联合攻克技术难题,不断优化实时瞬态锁相红外热分析系统(RTTLIT),使该系统温度灵敏度可达0.0001℃,功率检测限低至1uW,部分功能及参数优于进口设备。此外,致晟光电还与其他高校建立合作关系,搭建起学业-就业贯通式人才孵化平台。为学生提供涵盖研发设计、生产实践、项目管理全链条的育人平台,输送了大量实践能力强的专业人才,为企业持续创新注入活力。通过建立科研成果产业孵化绿色通道,高校的前沿科研成果得以快速转化为实际生产力,实现了高校科研资源与企业市场转化能力的优势互补。
热红外显微镜可捕捉物体热辐射,助力电子元件热分布与散热性分析。显微热红外显微镜功能
热红外显微镜对集成电路进行热检测,排查内部隐藏故障 。直销热红外显微镜选购指南
非破坏性分析(NDA)以非侵入方式分析样品内部结构和性能,无需切割、拆解或化学处理,能保留样品完整性,为后续研究留有余地,在高精度、高成本的半导体领域作用突出。
无损分析,通过捕捉样品自身红外热辐射成像,全程无接触,无需对晶圆、芯片等进行破坏性处理。在半导体制造中,可识别晶圆晶体缺陷;封装阶段,能检测焊接点完整性或封装层粘结质量;失效分析时,可定位内部短路或断裂区域的隐性热信号,为根源分析提供依据,完美适配半导体行业对高价值样品的保护需求。 直销热红外显微镜选购指南