相较于传统微光显微镜,InGaAs(铟镓砷)微光显微镜在检测先进制程组件微小尺寸组件的缺陷方面具有更高的适用性。其原因在于,较小尺寸的组件通常需要较低的操作电压,这导致热载子激发的光波长增长。InGaAs微光显微镜特别适合于检测先进制程产品中的亮点和热点(HotSpot)定位。InGaAs微光显微镜与传统EMMI在应用上具有相似性,但InGaAs微光显微镜在以下方面展现出优势:
1.侦测到缺陷所需时间为传统EMMI的1/5~1/10;
2.能够侦测到微弱电流及先进制程中的缺陷;
3.能够侦测到较轻微的MetalBridge缺陷;
4.针对芯片背面(Back-Side)的定位分析中,红外光对硅基板具有较高的穿透率。 微光显微镜能检测半导体器件微小缺陷和失效点,及时发现隐患,保障设备可靠运行、提升通信质量。红外光谱微光显微镜设备制造
选择国产 EMMI 微光显微镜,既是拥抱技术自主,更是抢占效率与成本的双重优势!致晟光电全本土化研发实力,与南京理工大学光电技术学院深度携手,致力于光电技术研究和产业化应用,充分发挥其科研优势,构建起产学研深度融合的技术研发体系。
凭借这一坚实后盾,我们的 EMMI 微光显微镜在性能上实现更佳突破:-80℃制冷型探测器搭配高分辨率物镜,轻松捕捉极微弱漏电流光子信号,漏电缺陷定位精度与国际设备同步,让每一个细微失效点无所遁形。 国产微光显微镜范围其低噪声电缆连接设计,减少信号传输过程中的损耗,确保微弱光子信号完整传递至探测器。
例如,当某批芯片在测试中发现漏电失效时,我们的微光显微镜能定位到具体的失效位置,为后续通过聚焦离子束(FIB)切割进行截面分析、追溯至栅氧层缺陷及氧化工艺异常等环节提供关键前提。可以说,我们的设备是半导体行业失效分析中定位失效点的工具,其的探测能力和高效的分析效率,为后续问题的解决奠定了不可或缺的基础。
在芯片研发阶段,它能帮助研发人员快速锁定设计或工艺中的隐患,避免资源的无效投入;在量产过程中,它能及时发现批量性失效的源头,为生产线调整争取宝贵时间,降低损失;在产品应用端,它能为可靠性问题的排查提供方向,助力企业提升产品质量和市场口碑。无论是先进制程的芯片研发,还是成熟工艺的量产检测,我们的设备都以其独特的技术优势,成为失效分析流程中无法替代的关键一环,为半导体企业的高效运转和技术升级提供有力支撑。
失效分析是指通过系统的检测、实验和分析手段,探究产品或器件在设计、生产、使用过程中出现故障、性能异常或失效的根本原因,进而提出改进措施以预防同类问题再次发生的技术过程。它是连接产品问题与解决方案的关键环节,**在于精细定位失效根源,而非*关注表面现象。在半导体行业,失效分析具有不可替代的应用价值,贯穿于芯片从研发到量产的全生命周期。
在研发阶段,针对原型芯片的失效问题(如逻辑错误、漏电、功耗过高等),通过微光显微镜、探针台等设备进行失效点定位,结合电路仿真、材料分析等手段,可追溯至设计缺陷(如布局不合理、时序错误)或工艺参数偏差,为芯片设计优化提供直接依据;在量产环节,当出现批量性失效时,失效分析能快速判断是光刻、蚀刻等制程工艺的稳定性问题,还是原材料(如晶圆、光刻胶)的质量波动,帮助生产线及时调整参数,降低报废率;在应用端,针对芯片在终端设备(如手机、汽车电子)中出现的可靠性失效(如高温环境下性能衰减、长期使用后的老化失效),通过环境模拟测试、失效机理分析,可推动芯片在封装设计、材料选择上的改进,提升产品在复杂工况下的稳定性。 晶体管和二极管短路或漏电时,微光显微镜依其光子信号判断故障类型与位置,利于排查电路故障。
InGaAs微光显微镜与传统微光显微镜在原理和功能上具有相似之处,均依赖于电子-空穴对复合产生的光子及热载流子作为探测信号源。然而,InGaAs微光显微镜相较于传统微光显微镜,呈现出更高的探测灵敏度,并且其探测波长范围扩展至900nm至1700nm,而传统微光显微镜的探测波长范围限于350nm至1100nm。这一特性使得InGaAs微光显微镜具备更更好的波长检测能力,从而拓宽了其应用领域。进一步而言,InGaAs微光显微镜的这一优势使其在多个科研与工业领域展现出独特价值。在半导体材料研究中,InGaAs微光显微镜能够探测到更长的波长,这对于分析材料的缺陷、杂质以及能带结构等方面具有重要意义。但欧姆接触和部分金属互联短路时,产生的光子十分微弱,难以被微光显微镜侦测到,借助近红外光进行检测。。国产微光显微镜范围
红外成像可以不破坏芯片封装,尝试定位未开封芯片失效点并区分其在封装还是 Die 内部,利于评估芯片质量。红外光谱微光显微镜设备制造
半导体企业购入微光显微镜设备,是提升自身竞争力的关键举措,原因在于芯片测试需要找到问题点 —— 失效分析。失效分析能定位芯片设计缺陷、制造瑕疵或可靠性问题,直接决定产品良率与市场口碑。微光显微镜凭借高灵敏度的光子探测能力,可捕捉芯片内部微弱发光信号,高效识别漏电、热失控等隐性故障,为优化生产工艺、提升芯片性能提供关键数据支撑。在激烈的市场竞争中,快速完成失效分析意味着缩短研发周期、降低返工成本,同时通过提升产品可靠性巩固客户信任,这正是半导体企业在技术迭代与市场争夺中保持优势的逻辑。红外光谱微光显微镜设备制造