甲基化修饰蛋白质组学技术原理:目前用于甲基化蛋白质组分析的甲基化肽段富集抗体分为精氨酸甲基化(Me-R)抗体和赖氨酸甲基化(Me-K)抗体两大类。根据氨基酸残基上所含甲基化修饰基团数量的不同,精氨酸甲基化(Me-R)抗体又包括:单甲基化精氨酸(MMA)抗体、非对称二甲基化精氨酸(ADMA)抗体和对称二甲基化精氨酸(SDMA)抗体;赖氨酸甲基化(Me-K)抗体又包括:赖氨酸单甲基化(K-Me)抗体、赖氨酸二甲基化(K-2Me)抗体和赖氨酸三甲基化(K-3Me)抗体。其中,Me-R的各类抗体需要单独使用,而Me-K抗体可以混合使用。蛋白质磷酸化对于许多生物现象的引发是很必要的。广州蛋白质甲基化修饰组学有哪些类型
蛋白质糖基化修饰组学技术怎么确定位点?蛋白质经过酶解后利用凝集素(lectin)富集N-糖基化肽段,然后用N-糖酰胺酶(PNGase)在H218O中切除连接在天冬酰胺残基(Asn)上的糖链。该处理致使Asn分子量增加2.9890Da。之后用高精度LC-MS质谱仪检测脱糖后的肽段,并通过MASCOT软件检索数据库,确认脱糖后分子量与其理论分子量的变化以及糖基化修饰肽段的序列,从而确定该蛋白质的N-糖基化位点。琥珀酰化修饰蛋白质组技术特点:采用主流抗体亲和富集方法,特异性高,富集效率好。杭州丙酰化修饰蛋白质组学一般流程蛋白质磷酸化修饰组学是植物体内比较常见的PTM修饰手段。
翻译后修饰蛋白组分析:蛋白质翻译后修饰是影响蛋白质功能并调节整个细胞过程的重要方式,几乎在每个细胞过程中都是不可或缺的。分析和鉴定翻译后修饰蛋白质对揭示蛋白质的功能和深入了解各种生理现象具有重要意义。大多数翻译后修饰蛋白以低化学计量和丰度存在,这限制了在分析全细胞裂解液时对其的检测。蛋白质是各种细胞功能比较重要的执行者,其功能正常与否决定着生命活动能否有序、高效的进行,而其中翻译后修饰起着至关重要的作用。翻译后修饰改变了蛋白质中不同氨基酸残基上的生物化学官能团,进而改变其化学性质或结构,使得蛋白质具有更为复杂的结构和更为完善的功能,实现更为精细的调节。蛋白质的翻译后修饰过程极其复杂,已知的翻译后修饰种类有20多种。但其中较为常见的主要是磷酸化、泛素化、SUMO化、酰(含乙酰)化、甲基化以及糖基化。
蛋白质翻译后修饰组学:翻译后修饰(Post-translational modification, PTM)是指对翻译后的蛋白质进行共价加工的过程。它通过在一个或多个氨基酸残基加上修饰基团,可以改变蛋白质的物理、化学性质,进而影响蛋白质的空间构象和活性状态、亚细胞定位、折叠及其稳定性以及蛋白质-蛋白质相互作用。蛋白质翻译后修饰的丰度变化在生命活动研究中具有重大意义,异常的翻译后修饰会导致多种疾病的发生。质谱可以分辨蛋白质修饰前和修饰后分子量上的变化,因此只要知道靶蛋白翻译后修饰前后分子量的变化,就能对翻译后修饰方式进行鉴定和定量。蛋白质翻译后修饰PTMs通常包括磷酸化,糖基化,泛素化,亚硝基化,甲基化,乙酰化,脂质化和蛋白水解。
蛋白质翻译后修饰组学产品:常规的蛋白质组学研究往往只关注不同生理、病理条件下蛋白质表达水平的变化。然而,越来越多的研究发现,许多重要的生命活动、疾病发生不仅与蛋白质的丰度相关,更重要的是被各类蛋白质翻译后修饰所调控。因此深入研究蛋白质翻译后修饰对揭示生命活动的机理、筛选疾病的临床标志物、鉴定药物靶点等方面都具有重要意义。由于翻译后修饰的蛋白质在生物样本中含量低、动态范围广,质谱分析前需要对修饰进行富集以提高其丰度。目前,发现的比较常见的修饰类型是糖基化、泛素化和磷酸化。贵阳丙酰化修饰蛋白质组学分析
泛素化修饰蛋白质组可以直接影响蛋白质的活性和定位。广州蛋白质甲基化修饰组学有哪些类型
泛素化修饰蛋白质组产品介绍:泛素化修饰(Ubiquitylation)是一种常见的蛋白质翻译后修饰,是指一个或多个泛素分子(Ubiquitin,由76个氨基酸组成的多肽)在一系列特殊的酶作用下,将细胞内的蛋白质分类,从中选出靶蛋白分子,并对靶蛋白进行特异性修饰的过程。 泛素化修饰是一种重要的翻译后修饰,泛素-蛋白酶体系统介导了真核生物80%~85%的蛋白质降解。除参与蛋白质降解之外,泛素化修饰还参与了细胞周期、增殖、细胞凋亡、分化、转录调控、基因表达、转录调节、信号传递、损伤修复、炎症免疫等几乎一切生命活动的调控。泛素化、心血管等疾病的发病密切相关。因此,作为近年来生物化学研究的一个重大成果,它已然成为研究、开发新药物的新靶点。广州蛋白质甲基化修饰组学有哪些类型