由于EUV光刻胶膜较薄,通常小于100nm,对于精细的线条,甚至不足50nm,因此光刻胶顶部与底部的光强差异便显得不那么重要了。而很长一段时间以来,限制EUV光刻胶发展的都是光源功率太低,因此研发人员开始反过来选用对EUV光吸收更强的元素来构建光刻胶主体材料。于是,一系列含有金属的EUV光刻胶得到了发展,其中含金属纳米颗粒光刻胶是其中的典型。2010年,Ober课题组和Giannelis课题组首度报道了基于HfO2的金属纳米颗粒光刻胶,并研究了其作为193nm光刻胶和电子束光刻胶的可能性。随后,他们将这一体系用于EUV光刻,并将氧化物种类拓宽至ZrO2。他们以异丙醇铪(或锆)和甲基丙烯酸(MAA)为原料,通过溶胶-凝胶法制备了稳定的粒径在2~3nm的核-壳结构纳米颗粒。纳米颗粒以HfO2或ZrO2为核,具有很高的抗刻蚀性和对EUV光的吸收能力;而有机酸壳层不但是光刻胶曝光前后溶解度改变的关键,还能使纳米颗粒稳定地分散于溶剂之中,确保光刻胶的成膜性。ZrO2-MAA纳米材料加入自由基引发剂后可实现负性光刻,在4.2mJ·cm?2的剂量下获得22nm宽的线条;而加入光致产酸剂曝光并后烘,利用TMAH显影则可实现正性光刻。按显示效果分类:光刻胶可分为正性光刻胶和负性光刻胶。嘉定LCD触摸屏用光刻胶显示面板材料
目前使用的ZEP光刻胶即采用了前一种策略。日本瑞翁公司开发的ZEP光刻胶起初用于电子束光刻,常用的商用品种ZEP520A为α-氯丙烯酸甲酯和α-甲基苯乙烯的1∶1共聚物。氯原子的引入可提高灵敏度,此外苯乙烯部分也可提高抗刻蚀性和玻璃化转变温度。采用后一种策略时,常用的高分子主链有聚碳酸酯和聚砜。2010年,美国纽约州立大学的课题组报道了一系列以聚碳酸酯高分子为主体材料的光刻胶,高分子主链中具有二级或三级烯丙酯结构可在酸催化下裂解形成双键和羧酸。此外,他们还在高分子中引入了芳香基团,以增强其抗刻蚀性??苫竦?6nm线宽、占空比为1∶1的线条,22.5mJ·cm?2的剂量下可获得线宽为26nm的线条。上海KrF光刻胶集成电路材料光刻胶行业日系企业实力雄厚,国内厂商有望复刻成功经验。
2018年,相关研究课题小组报道了一系列含有第VIII族元素的六配位型的配合物,配体为联吡啶或草酸。他们研究了联吡啶数量和草酸根数量的多少对光刻胶灵敏度的影响情况。其中含有两个草酸配体、一个联吡啶配体结构的材料具有较高的灵敏度,也可获得分辨率较高的光刻线条。其他配体结构的灵敏度都不如以上配体结构的灵敏度高。EUV光导致草酸根部分分解后,会发生分子间的交联反应。配合物灵敏度与中心金属原子相关,顺序为Cr<Fe<Co,刚好与其对EUV光的吸收能力一致。
EUV光刻胶的基本原理与所有使用其他波长光曝光的光刻胶是相同的,都是在光照后发生光化学反应及热化学反应,主体材料结构改变导致光刻胶溶解度转变,从而可以被部分显影。但与其他波长曝光的光刻工艺相比,EUV光刻也有着诸多的不同。从化学反应机理来看,EUV光刻与前代光刻差异是,引发反应的,不仅有光子,还有由13.5nm软X射线激发出的二次电子。EUV光刻用到的光子能量高达92eV,曝光过程中,几乎所有的原子都能吸收EUV光子而发生电离,并产生高能量的二次电子(65~87eV)和空穴,二次电子可以继续激发光敏剂,形成活性物种。目前,我国光刻胶自给率较低,生产也主要集中在中低端产品,国产替代的空间广阔。
除了枝状分子之外,环状单分子树脂近年来也得到了迅速发展。这些单分子树脂的环状结构降低了分子的柔性,从而通常具有较高的玻璃化转变温度和热化学稳定性。由于构象较多,此类分子也难以结晶,往往具有很好的成膜性。起初将杯芳烃应用于光刻的是东京科技大学的Ueda课题组,2002年起,他们报道了具有间苯二酚结构的杯芳烃在365nm光刻中的应用。2007年,瑞士光源的Solak等利用对氯甲氧基杯芳烃获得了线宽12.5nm、占空比1∶1的密集线条,但由于为非化学放大光刻胶,曝光机理为分子结构被破坏,灵敏度较差,为PMMA的1/5。半导体光刻胶的涂敷方法主要是旋转涂胶法,具体可以分为静态旋转法和动态喷洒法。江浙沪光分解型光刻胶显示面板材料
光刻胶是一大类具有光敏化学作用的高分子聚合物材料,是转移紫外曝光或电子束曝照图案的媒介。嘉定LCD触摸屏用光刻胶显示面板材料
更高的分辨率和抗刻蚀性,合适的灵敏度,更低的粗糙度,依然是研发人员需要继续努力的目标。随着3nm乃至2nm技术节点已经进入半导体工业发展的日程表,实现相应线宽的光刻技术和光刻胶也应该早日成熟。台积电在5nm制程中已经用到了多达14层的EUV光刻,3nm制程对EUV光刻的需求量显然只会更多,要求也只会更高。此外,EUV光刻过程中也有许多机理问题尚需进一步明确,尤其是起步较晚的有机-无机杂化光刻胶,现有光刻机理报道之间常常见到矛盾的论述。嘉定LCD触摸屏用光刻胶显示面板材料