光刻胶的产业链上游:主要涉及溶剂、树脂、光敏剂等原材料供应商和光刻机、显影机、检测与测试等设备供应商。从原材料市场来看,由于中国从事光刻胶原材料研发及生产的供应商较少,中国光刻胶原材料市场主要被日本、韩国和美国厂商所占据。从设备市场来看,中国在光刻机、显影机、检测与测试设备行业的起步时间较晚,且这些设备具备较高的制造工艺壁垒,导致中国在光刻胶、显影机、检测与测试设备的国产化程度均低于10%。相信后期国产化程度会越来越高。在集成电路制造领域,如果说光刻机是推动制程技术进步的“引擎”,光刻胶就是这部“引擎”的“燃料”。普陀TFT-LCD正性光刻胶显示面板材料
导体光刻胶的涂敷方法主要是旋转涂胶法,具体可以分为静态旋转法和动态喷洒法。静态旋转法:首先把光刻胶通过滴胶头堆积在硅片的中心,然后低速旋转使得光刻胶铺开,再以高速旋转甩掉多余的光刻胶。在高速旋转的过程中,光刻胶中的溶剂会挥发一部分。静态涂胶法中的光刻胶堆积量非常关键,量少了会导致光刻胶不能充分覆盖硅片,量大了会导致光刻胶在硅片边缘堆积甚至流到硅片的背面,影响工艺质量。动态喷洒法:随着硅片尺寸越来越大,静态涂胶已经不能满足新型的硅片加工需求。相对静态旋转法而言,动态喷洒法在光刻胶对硅片进行浇注的时刻就开始以低速旋转帮助光刻胶进行**初的扩散。这种方法可以用较少量的光刻胶形成更均匀的光刻胶铺展,以高速旋转形成满足厚薄与均匀度要求的光刻胶膜。江苏LCD触摸屏用光刻胶集成电路材料氧化物型光刻胶:这种类型的光刻胶由氧化硅或其他窄带隙材料制成。在制造高质量微电子设备时非常有用。
从90年代后半期开始,光刻光源就开始采用248nm的KrF激光;而从2000年代开始,光刻就进一步转向使用193nm波长的ArF准分子激光作为光源。在那之后一直到目前的约20年里,193nm波长的ArF准分子激光一直是半导体制程领域性能可靠,使用较多的光刻光源。一般而言,KrF(248nm)光刻胶使用聚对羟基苯乙烯及其衍生物作为成膜树脂,使用磺酸碘鎓盐和硫鎓盐作为光致酸剂;而ArF(193nm)光刻胶则多使用聚甲基丙烯酸酯衍生物,环烯烃-马来酸酐共聚物,环形聚合物等作为成膜树脂;由于化学结构上的原因,Arf(193nm)光刻胶需要比KrF(248nm)光刻胶更加敏感的光致酸剂。
光刻胶行业具有极高的行业壁垒,因此在全球范围其行业都呈现寡头垄断的局面。光刻胶行业长年被日本和美国专业公司垄断。目前大厂商就占据了全球光刻胶市场 87%的份额,行业集中度高。其中,日本 JSR、东京应化、日本信越与富士电子材料市占率加和达到72%。并且高分辨率的 KrF 和 ArF 半导体光刻胶技术亦基本被日本和美国企业所垄断,产品绝大多数出自日本和美国公司,如杜邦、JSR 株式会社、信越化学、东京应化工业、Fujifilm,以及韩国东进等企业。整个光刻胶市场格局来看,日本是光刻胶行业的巨头聚集地。亚甲基双苯醚型光刻胶:这种类型的光刻胶适用于制造精度较低的电路元件。
浸没光刻和双重光刻技术在不改变 193nm波长ArF光刻光源的前提下,将加工分辨率推向10nm的数量级。与此同时,这两项技术对光刻胶也提出了新的要求。在浸没工艺中;光刻胶首先不能与浸没液体发生化学反应或浸出扩散,损伤光刻胶自身和光刻镜头;其次,光刻胶的折射率必须大于透镜,液体和顶部涂层。因此光刻胶中主体树脂的折射率一般要求达到1.9以上;接着,光刻胶不能在浸没液体的浸泡下和后续的烘烤过程中发生形变,影响加工精度;当浸没工艺目标分辨率接近10nm时,将对于光刻胶多个性能指标的权衡都提出了更加苛刻的挑战。浸没 ArF 光刻胶制备难度大于干性 ArF 光刻胶,是 ArF光刻加工分辨率突破 45nm 的关键之一。光刻胶属于技术和资本密集型行业,目前主要技术主要掌握在日、美等国际大公司手中,全球供应市场高度集中。普陀负性光刻胶显示面板材料
光刻胶按应用领域分类,可分为 PCB 光刻胶、显示面板光刻胶、半导体光刻胶及其他光刻胶。普陀TFT-LCD正性光刻胶显示面板材料
受制于国内光刻胶技术发展水平,目前我国前沿光刻胶的自给率仍然保持较低水平。尽管国内光刻胶市场保持良好的增长趋势,但以KrF、ArF光刻胶为主的半导体光刻胶领域国内市场份额仍然较小,前沿光刻胶市场长期为国外巨头所垄断。从技术水平来看,目前中国本土光刻胶的整体技术水平与国际先进水平存在明显差距,且主要集中在技术含量较低的PCB光刻胶领域,而在半导体光刻胶和LCD光刻胶方面自给率较低。具体而言,半导体光刻胶中g线/i线光刻胶国产化率为10%,而ArF/KrF光刻胶的国产化率为1%,对于前沿的EUV光刻胶目前仍处于研发阶段。普陀TFT-LCD正性光刻胶显示面板材料