重组人激肽释放酶5(Recombinant Human Kallikrein 5,简称KLK5)是一种丝氨酸蛋白酶,属于人组织激肽释放酶家族成员,广表达于皮肤、乳腺、唾液腺和食管等组织中。KLK5在皮肤中尤其丰富,主要参与角质层蛋白的降解过程,对维持皮肤屏障功能和正常脱屑具有重要作用。该重组蛋白通常采用大肠杆菌表达系统制备,N端带有His标签,便于通过金属螯合亲和层析(IMAC)进行高效纯化,纯度可达95%以上。蛋白以液体形式提供,溶解于含尿素的缓冲液中,适合用于体外酶活性分析、抗体开发及蛋白质相互作用研究。研究表明,KLK5具有胰蛋白酶样活性,能够特异性切割含有精氨酸或赖氨酸残基的底物,但不具有胰凝乳蛋白酶样活性。此外,KLK5在体液中可与蛋白酶抑制剂如α1-抗胰蛋白酶和α2-巨球蛋白形成复合物,这种相互作用可能调节其酶活性,并在炎症和病微环境中发挥重要作用。在病研究中,KLK5被发现与卵巢病和乳腺病的发长发展密切相关,其表达水平在患者血清和腹水中明显升高,提示其可能作为潜在的病标志物用于临床诊断和预后评估。因此,重组人KLK5蛋白不仅是研究皮肤生理和病理机制的重要工具,也为病标志物开发和药物筛选提供了有力支持。多泛素化的靶蛋白被26S蛋白酶体识别。26S蛋白酶体由一个20S颗粒和两个19S调节颗粒组成。Galantide
重组人SLAMF1蛋白是一种在哺乳动物细胞中表达的重组蛋白,主要包含SLAMF1的胞外区,融合了hFc标签,便于纯化和检测。SLAMF1(Signaling Lymphocyte Activation Molecule Family Member 1),也称为CD150,是一种共刺激分子,广表达于免疫细胞(如T细胞、B细胞和巨噬细胞)表面,通过同型或异型相互作用调节免疫细胞的启动和信号转导。SLAMF1的功能与机制SLAMF1在免疫细胞的启动和信号转导中发挥重要作用。它通过与自身或其他SLAM家族成员(如SLAMF4、SLAMF6)结合,传递启动信号,促进免疫细胞的增殖、分化和细胞因子分泌。SLAMF1的信号转导依赖于其胞内段的免疫受体酪氨酸启动基序(ITAM),启动后可招募多种信号分子,如Syk和PI3K,进而调节免疫反应。此外,SLAMF1在免疫细胞间的相互作用中也起到关键作用,影响免疫细胞的协同启动和免疫应答。重组人SLAMF1蛋白的特点重组人SLAMF1蛋白具有以下明显特点:高纯度:纯度≥95%(经SDS-PAGE和SEC-HPLC验证),确保实验结果的可靠性。低内素:内素水平<0.1 EU/μg,适合用于细胞实验和体内研究。功能完整:保留了天然SLAMF1的结合位点和信号转导功能。Recombinant Mouse MIG/CXCL9 Protein这种染料在PCR过程中能够实时监测DNA的扩增情况,通过荧光信号的强度变化反映目标基因的扩增程度。
在生物技术的微观世界中,限制性核酸内切酶是基因工程的关键工具之一,而 AluI 则是其中一位“微雕大师”。它以其独特的识别序列和切割方式,在基因工程、分子生物学研究以及遗传学等领域发挥着重要作用。AluI 的识别序列是“AG^CT”,这一序列在基因组中相对常见,使得 AluI 能够在多个位点进行切割。它会在识别到该序列后,在“^”标记的位置将 DNA 链切断,产生黏性末端。这种切割方式使得 AluI 在基因克隆和重组 DNA 构建中具有独特的优势。在基因工程中,AluI 的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过 DNA 连接酶将切割后的基因片段与载体 DNA 连接起来,构建出能够高效表达目标蛋白的重组载体。这一过程不仅需要精细的切割,还需要切割后的片段能够完美匹配,而 AluI 的黏性末端特性正好满足了这一需求。AluI 的另一个重要应用是基因分析。通过观察 AluI 对不同 DNA 样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。这种技术在遗传病诊断和基因多样性研究中具有重要意义。例如,在某些遗传病的研究中,AluI 可以用来检测基因突变,帮助科学家更好地理解疾病的遗传机制。
在现代替物技术的舞台上,限制性核酸内切酶AccI是一位备受瞩目的“明星”。它是一种能够特异性识别并切割DNA的酶,凭借其精细的切割能力,在基因工程领域扮演着不可或缺的角色。AccI的识别序列是“GT^AC”,这意味着它会在DNA双链上找到这一特定的核苷酸序列,并在“^”标记的位置将DNA链切断。这种切割方式非常独特,它会产生黏性末端,即切割后的DNA片段两端会暴露出一段互补的单链区域。这种黏性末端的特性使得AccI在基因克隆和重组DNA技术中大显身手。在基因工程中,科学家们常常需要将目标基因从复杂的基因组中分离出来,并将其插入到合适的载体中。AccI可以像一把“精细刻刀”一样,将目标基因和载体DNA在特定位置切割,暴露出的黏性末端能够通过碱基互补配对的方式相互结合,再利用DNA连接酶将它们连接起来,从而构建出重组DNA分子。AccI的应用不仅局限于基因克隆,它还在基因分析和诊断中发挥着重要作用。通过AccI对DNA的切割模式,科学家可以分析基因的多态性,帮助诊断某些遗传性疾病。此外,AccI还可以用于构建基因文库,为研究基因功能和进化提供了重要的工具。AccI的发现和应用是分子生物学发展的重要里程碑。 Cas9 NLS与CRISPR/Cas9系统中的gRNA兼容,可以进行位点特异性的DNA切割 。
重组人LGR-5蛋白(Recombinant Human LGR-5 Protein, hFc Tag)是一种重要的G蛋白偶联受体(GPCR),属于富含亮氨酸重复序列的GPCR家族成员,广表达于多种组织干细胞表面,尤其在肠道隐窝、胃腺体及囊干细胞中高表达。LGR-5(Leucine-rich repeat-containing G-protein coupled receptor 5)是干细胞维持、组织再生及病发生过程中的关键标志物。该重组蛋白采用真核表达系统(如HEK293细胞)制备,确保了其天然构象和生物活性。其C端融合了人IgG Fc(hFc)标签,不仅提高了蛋白的稳定性和溶解性,还便于通过Protein A亲和层析进行高效纯化。此外,hFc标签还可用于免疫共沉淀、流式细胞术及体内功能研究等实验。研究表明,LGR-5在肠道干细胞维持、组织稳态及病干细胞特性中具有重要作用。其表达异常与结直肠病、胃病等多种病的发长发展密切相关。因此,重组人LGR-5蛋白不仅是研究干细胞生物学及病机制的重要工具,也为开发相关疾病的治策略提供了有力支持,具有重要的科研和临床应用价值。牛痘DNA拓扑异构酶I可以用于PCR产物的克隆,通过其识别序列在引物设计中引入,实现扩增后的DNA片段连接 。Recombinant Human CD99/MIC2 (His Tag)
Phusion Master Mix (2×) (Without Dye)的无染料配方为实验设计提供了更大的灵活性从而获得更准确的实验数据。Galantide
重组人SLAMF6蛋白是一种在哺乳动物细胞中表达的重组蛋白,主要包含SLAMF6的胞外区,融合了hFc标签,便于纯化和检测。SLAMF6(Signaling Lymphocyte Activation Molecule Family Member 6),也称为NTB-A(Natural Killer T-Binding Antigen),是SLAM家族的重要成员,广表达于免疫细胞(如T细胞、B细胞、NK细胞和巨噬细胞)表面,通过同型或异型相互作用调节免疫细胞的启动和信号转导。SLAMF6的功能与机制SLAMF6在免疫细胞的启动和信号转导中发挥重要作用。它通过与自身或其他SLAM家族成员(如SLAMF1、SLAMF4)结合,传递启动信号,促进免疫细胞的增殖、分化和细胞因子分泌。SLAMF6的信号转导依赖于其胞内段的免疫受体酪氨酸启动基序(ITAM),启动后可招募多种信号分子,如Syk和PI3K,进而调节免疫反应。此外,SLAMF6在免疫细胞间的相互作用中也起到关键作用,影响免疫细胞的协同启动和免疫应答。重组人SLAMF6蛋白的特点重组人SLAMF6蛋白具有以下明显特点:高纯度:纯度≥95%(经SDS-PAGE和SEC-HPLC验证),确保实验结果的可靠性。低内素:内素水平<0.1 EU/μg,适合用于细胞实验和体内研究。功能完整:保留了天然SLAMF6的结合位点和信号转导功能。