变压器在电力系统中扮演着至关重要的角色,其运行状态直接关系到电力系统的安全与稳定。末屏作为变压器绝缘结构的关键部分,其状态的变化往往能够提前反映设备内部潜在的故障。末屏的绝缘性能一旦出现异常,可能会引发局部放电、绝缘老化等问题,进而导致变压器故障甚至损坏。通过末屏在线监测,可以实时获取末屏的电气参数、绝缘状况等关键信息。例如,当末屏出现受潮、绝缘老化等现象时,其绝缘电阻、介质损耗因数等参数会发生明显变化。在线监测系统能够在这些参数出现异常变化的初期就及时捕捉到,从而为运维人员提供准确的预警信息。这使得运维人员能够提前采取措施,如调整运行方式、安排检修计划等,避免故障进一步扩大。此外,末屏在线监测还可以减少因设备突发故障而导致的停电时间和经济损失,提高供电可靠性和电网运行效率。因此,变压器末屏在线监测不仅是设备运行管理的重要手段,也是电力系统安全稳定运行的关键技术之一。 混合介质放电在多种介质中同时发生,放电脉冲较宽且与电压相位有关。江西GIS局部放电在线监测解决方案
在单芯电缆系统中,当导体通过交流电流时,会在其金属护套上感应出电压,这被称为护层感应电压。这种现象是由电磁感应原理决定的,其幅值主要受导体电流大小、电缆排列方式(间距与相位)、护套接地方式(单点接地或交叉互联)以及线路长度等因素影响。在实际运行中,多种因素可能导致电压异常升高。电缆护层感应电压在线监测,正是为了持续、实时地掌握这一关键参数的实际水平。监测点通常设置在护套的接地引线、交叉互联箱的连接点或专门设计的电压抽取装置上,使用高阻抗电压测量设备获取数据。实施护层电压在线监测主要服务于以下几个潜在目的:护层电压过高是需要高度关注的情况。它可能在电缆附件(如接头、终端)外露的金属部分或邻近接地体上产生危险接触电压,对运维人员构成潜在危险。在线监测有助于及时发现超出安全限值(的异常电压。诊断接地系统状态:护层电压的变化(如异常升高或降低)往往是接地系统状态改变的重要指示信号。这可能提示:设计接地点失效、交叉互联连接错误或断开、护套绝缘性能下降导致多点接地倾向、或者因外力破坏等原因造成的接地回路异常。监测电压可为排查接地问题提供线索。 变压器局部放电在线监测护层感应电压监测可发现护层绝缘破损,避免多点接地事故。
温度是开关柜运行状态的重要指标之一。开关柜内部的电气元件在运行过程中会产生热量,如果温度过高,可能会导致元件绝缘性能下降,甚至引发短路故障。因此,对开关柜温度的实时监测至关重要。目前,开关柜温度监测技术主要有接触式和非接触式两种方式。接触式温度传感器通常采用热电偶或热电阻,将其直接安装在开关柜的发热元件上,通过测量元件表面的温度来反映设备的运行状态。这种方式的优势是测量精度较高,但安装过程较为复杂,且可能会对电气元件的正常运行产生一定的影响。非接触式温度监测则主要利用红外热成像技术,通过红外热像仪对开关柜内部进行扫描,能够直观地获取设备的温度分布情况。红外热成像技术不仅可以检测到开关柜内部的异常高温点,还可以对设备的整体运行状态进行评估,具有检测范围广、速度快、无需接触等优势。然而,其成本相对较高,且受环境因素的影响较大。随着技术的不断发展,温度监测技术也在不断优化,例如采用分布式光纤温度传感器,可以实现对开关柜内部温度的实时、连续监测,设备为的安全运行提供更加可靠的保证。
在单芯电缆中,金属护套通常设计为单点接地或交叉互联接地。当护套绝缘受损、接地系统出现异常(如多点接地)或施工/设计存在偏差时,护套间可能形成闭合回路,导致感应电压驱动电流循环流动,即产生护套环流。电缆环流在线监测的目标,正是为了持续追踪这种非预期环流的大小和变化趋势。通常,监测装置(如高精度电流互感器)被安装在电缆护套的接地线或交叉互联箱的回流路径上,实现对环流值的实时或周期性数据采集。对环流进行在线监测具有多重潜在意义:识别异常接地状态:高于设计值或历史基准的环流,往往是护套绝缘破损、多点接地故障或交叉互联系统失效的一个重要指示信号。这有助于运维人员及时关注相关区段。持续的环流会在金属护套上产生焦耳热损耗(I2R损耗)。这不仅浪费电能,更关键的是,由此产生的额外温升可能叠加在电缆导体发热之上,对电缆的整体运行温度构成影响,存在加速绝缘老化的问题。监测环流有助于评估这部分损耗的规模。过大的环流及其产生的热量,尤其在接头等薄弱点附近,是值得警惕的因素。结合温度监测,环流数据可为评估局部过热提供辅助参考。优化系统效率:发现不必要的环流路径,有助于减少系统运行中的非必要能量损耗。 接头温度无线传输采用470MHz频段规避变电站电磁干扰。
故障诊断是GIS在线监测系统的重要功能之一。通过对采集到的运行状态数据进行分析和处理,可以及时发现设备的故障隐患,并对其进行诊断和定位。故障诊断技术主要基于数据挖掘、模式识别和人工智能等方法。数据挖掘技术通过对大量监测数据的分析,挖掘出数据中的潜在规律和模式,从而为故障诊断提供依据。例如,通过对GIS设备温度、局部放电、气体泄漏等数据的历史变化趋势进行分析,可以发现设备的异常变化规律,提前预警故障。模式识别技术则是通过建立设备正常运行和故障状态的特征模式库,将采集到的数据与特征模式进行匹配,从而实现对故障的快速诊断。例如,局部放电信号的模式识别可以通过对不同类型的局部放电信号进行分类和识别,确定故障的类型和位置。人工智能技术,如神经网络、支持向量机等,则可以对复杂的监测数据进行自动学习和分析,建立故障诊断模型,实现对故障的智能诊断。随着技术的不断发展,故障诊断技术也在不断优化和创新,例如采用深度学习算法,可以对大规模的监测数据进行深度挖掘和分析,提高诊断的准确性和效率。通过多种故障诊断技术的结合,可以实现对GIS设备故障的快速、准确诊断,为设备的维护和检修提供科学指导。 电缆在线监测系统可实时采集电缆运行参数,为运维决策提供数据支持。青海变压器综合在线监测装置
UHF局放监测在电缆终端处安装方向性天线提升信噪比。江西GIS局部放电在线监测解决方案
变压器作为电网的“心脏”,其运行状态至关重要。在线监测系统通过实时感知关键参数,构建起变压器运行的“数字孪生体”,实现从定期检修到预测性维护的转变。监测参数:电气参量:负荷电流&电压:基础运行工况,结合温度分析过载、不平衡问题。套管介损(tanδ)&电容量:评估套管绝缘老化、受潮的关键指标。铁芯/夹件接地电流:检测多点接地故障,防止局部过热烧损。局部放电(PD):通过高频电流互感器(HFCT)、超高频(UHF)或声电联合传感器,捕捉绝缘内部缺陷产生的放电信号。温度测量:顶层油温&热点温度(估算/直接测量):温升指标,直接关联绝缘老化速率与过载能力。绕组温度(光纤或间接计算):评估脆弱部位的热状态。冷却器状态:监测风扇/油泵运行、散热效率。机械状态(振动/声学):本体振动&噪声:诊断铁芯松动、绕组变形、冷却系统异常。频率响应分析法(FRA):(周期性或在线)诊断绕组位移、变形。辅助参量:环境温度、湿度、柜门状态等。 江西GIS局部放电在线监测解决方案