六氟化硫(SF?)气体是GIS设备的关键绝缘和灭弧介质,其绝缘性能和灭弧能力远优于空气。然而,SF?气体是一种温室气体,其温室效应是二氧化碳的数万倍。一旦GIS设备发生气体泄漏,不仅会影响设备的绝缘性能,还会对环境造成严重危害。因此,气体泄漏监测是GIS在线监测的重要组成部分。气体泄漏监测主要通过气体传感器来实现,这些传感器可以检测GIS设备内部SF?气体的浓度变化。当气体泄漏时,设备内部的SF?气体浓度会降低,而外部环境中的SF?气体浓度会升高。通过在GIS设备的外壳和密封部位安装气体传感器,可以实时监测气体泄漏情况。此外,还可以采用声学传感器来检测气体泄漏产生的声波信号,从而实现对泄漏的早期预警。随着传感器技术的不断发展,气体泄漏监测的精度和可靠性也在不断提高。例如,采用激光吸收光谱技术的气体传感器能够高精度地检测SF?气体的浓度变化,为GIS设备的气体泄漏监测提供了手段。通过气体泄漏监测,可以及时发现泄漏点并进行修复,确保GIS设备的绝缘性能和环境保护。UHF传感器内置在盆式绝缘子处,检测频段300MHz-3GHz。甘肃开关柜测温在线监测装置
局部放电(PD)是变压器内部绝缘劣化的征兆之一,如同绝缘系统发出的“求救信号”。变压器局放在线监测技术通过实时捕捉、分析这些微弱的放电脉冲,在绝缘故障引发灾难性后果(如击穿)之前实现预警和监测,是电力设备安全运行的“前沿哨兵”。监测原理与技术方案:变压器内部放电会产生丰富的物理效应:电磁脉冲:放电瞬间产生纳秒级高频电流脉冲和电磁波。超声波:放电点气体膨胀或收缩产生压力波。主流监测方法根据感知原理部署:超高频(UHF)法-主流且灵敏:原理:在变压器箱壁或内置传感器(如盆式绝缘子处),捕获300MHz-3GHz频段的电磁波信号。部署:外置天线(非侵入)或内置传感器(需预留接口)。高频电流互感器(HFCT)法:原理:在变压器中性点、铁芯/夹件接地线或套管末屏接地线上安装HFCT,捕捉沿接地线传播的放电脉冲电流。优势:安装相对简便,成本较低,可监测与接地线耦合的放电。声学(AE)法:原理:在变压器外壳多点安装超声波传感器,接收放电产生的声波信号。联合监测(趋势):结合UHF+AE或UHF+HFCT,利用多物理量信息互补,提升诊断可靠性。 湖北开关柜局部放电在线监测供应商家表面放电在绝缘材料表面发生,放电脉冲较宽且与电压相位有关。
高频电流法是一种结合了脉冲电流法和超声波法优点的局部放电监测方法。其原理是通过检测高频电流信号来实现对局部放电的监测。局部放电过程中产生的脉冲电流信号不仅包含低频成分,还包含丰富的高频成分。高频电流法通过在设备的接地线上安装高频电流传感器(HFCT),检测这些高频电流信号。高频电流传感器通常采用罗氏线圈或高频变压器,能够检测到频率范围在1MHz到100MHz之间的高频电流信号。高频电流法的优点是灵敏度高,能够检测到微弱的局放信号,同时抗干扰能力较强,能够有效抑制低频干扰信号。此外,高频电流信号的传播特性使得其能够更准确地反映局放的特征,便于对局放信号进行分析和诊断。高频电流法不仅可以检测到局放信号的存在,还可以通过信号的频率分布、幅值等特征来判断局放的类型和严重程度。然而,高频电流法的缺点是高频传感器的成本较高,且对安装环境的要求较高,需要避免高频信号的外部干扰。高频电流法广泛应用于电力设备的局放监测中,尤其是在需要高灵敏度和高抗干扰能力的场合。
沿面放电是指沿着固体绝缘表面与气体或液体介质交界面发生的放电现象。这种放电通常发生在高压设备的绝缘子表面或电缆终端。沿面放电的特征是放电路径沿着绝缘表面延伸,放电电流脉冲较宽,且通常与电压相位有关。在PRPD图谱中,沿面放电的特征表现为:放电脉冲主要集中在电压波形的正半周和负半周的特定相位范围内,形成明显的带状分布。这些带状分布通常呈“C”形或“S”形,且放电脉冲的幅值较大,数量较多。由于沿面放电与电压相位密切相关,因此在PRPD图谱中可以清晰地看到放电脉冲与电压相位的对应关系。通过分析PRPD图谱中的这些特征,可以有效判断是否存在沿面放电。 GIS局放在线监测系统采用超高频天线检测局放产生的UHF信号。
局部放电是开关柜绝缘老化和故障的早期征兆之一。当开关柜内部的绝缘材料受到电场、机械应力或环境因素的影响时,可能会出现局部放电现象。局部放电不仅会加速绝缘材料的老化,还会产生电磁干扰,影响电力系统的正常运行。因此,对开关柜局部放电的监测是在线监测系统的重要组成部分。局部放电监测技术主要有脉冲电流法、超声波法和高频电流法等。脉冲电流法是通过在开关柜的接地线上安装传感器,检测局部放电产生的脉冲电流信号。这种方法的优势是灵敏度高,能够检测到微弱的放电信号,但容易受到外部电磁干扰的影响。超声波法则是利用局部放电产生的超声波信号来进行检测。当局部放电发生时,会产生高频的超声波,通过在开关柜表面安装超声波传感器,可以检测到这些信号。超声波法的优势是抗干扰能力强,能够对局部放电的位置进行较为准确的判断,但其检测范围相对较小。高频电流法则是通过检测高频电流信号来实现局部放电的监测。这种方法结合了脉冲电流法和超声波法的优势,具有较高的灵敏度和抗干扰能力。随着数字化技术的发展,局部放电监测系统也在不断智能化,能够对监测到的信号进行自动分析和诊断,及时发现设备的潜在故障问题。 电缆在线监测系统可实时采集电缆运行参数,为运维决策提供数据支持。重庆GIS局部放电在线监测
接头温度无线传输采用470MHz频段规避变电站电磁干扰。甘肃开关柜测温在线监测装置
特高频法(UHF)是一种基于局部放电过程中产生的特高频电磁波信号进行监测的方法。局部放电过程中产生的电磁波信号通常具有较宽的频谱,其中特高频段(300MHz到3GHz)的信号具有较高的能量和传播特性。特高频法通过在设备内部或附近安装特高频传感器来检测这些特高频信号。特高频传感器通常采用天线式结构,能够将接收到的特高频电磁波信号转换为电信号,并传输到监测系统进行分析。特高频法的优点是灵敏度高,能够检测到微弱的局放信号,且抗干扰能力极强,能够有效抑制低频和高频干扰信号。此外,特高频信号的传播特性使得其能够更准确地反映局放的位置和特征,便于对局放进行定位和诊断。特高频法不仅可以检测到局放信号的存在,还可以通过信号的频率分布、幅值、相位等特征来判断局放的类型和严重程度。然而,特高频法的缺点是传感器的成本较高,且对安装位置和环境的要求较高,需要避免外部电磁波的干扰。特高频法广泛应用于GIS、变压器等电力设备的局放监测中,尤其是在需要高灵敏度和高抗干扰能力的场合。 甘肃开关柜测温在线监测装置