非破坏性分析(NDA)以非侵入方式分析样品内部结构和性能,无需切割、拆解或化学处理,能保留样品完整性,为后续研究留有余地,在高精度、高成本的半导体领域作用突出。
无损分析,通过捕捉样品自身红外热辐射成像,全程无接触,无需对晶圆、芯片等进行破坏性处理。在半导体制造中,可识别晶圆晶体缺陷;封装阶段,能检测焊接点完整性或封装层粘结质量;失效分析时,可定位内部短路或断裂区域的隐性热信号,为根源分析提供依据,完美适配半导体行业对高价值样品的保护需求。 热红外显微镜在 SiC/GaN 功率器件检测中,量化评估衬底界面热阻分布。国内热红外显微镜市场价
在失效分析的有损分析中,打开封装是常见操作,通常有三种方法。全剥离法会将集成电路完全损坏,留下完整的芯片内部电路。但这种方法会破坏内部电路和引线,导致无法进行电动态分析,适用于需观察内部电路静态结构的场景。局部去除法通过特定手段去除部分封装,优点是开封过程不会损坏内部电路和引线,开封后仍可进行电动态分析,能为失效分析提供更丰富的动态数据。自动法则是利用硫酸喷射实现局部去除,自动化操作可提高效率和精度,不过同样属于破坏性处理,会对样品造成一定程度的损伤。
半导体热红外显微镜故障维修热红外显微镜结合自研算法,对微弱热信号进行定位分析,锁定潜在缺陷 。
RTTLITP20 热红外显微镜凭借多元光学物镜配置,构建从宏观到纳米级的全尺度热分析能力,灵活适配多样检测需求。Micro广角镜头可快速覆盖大尺寸样品整体热分布,如整块电路板、大型模组的散热趋势,高效完成初步筛查;0.13~0.3x变焦镜头通过连续倍率调节,适配芯片封装体、传感器阵列等中等尺度器件热分析,兼顾整体热场与局部细节;0.65X~0.75X变焦镜头提升分辨率,解析芯片内部功能单元热交互,助力定位封装散热瓶颈;3x~4x变焦镜头深入微米级结构,呈现晶体管阵列、引线键合点等细微部位热分布;8X~13X变焦镜头聚焦纳米尺度,捕捉微小短路点、漏电流区域等纳米级热点的微弱热信号,满足先进制程半导体高精度分析需求。
多段变焦与固定倍率结合的设计,实现宏观到微观热分析平滑切换,无需频繁更换配件,大幅提升半导体失效分析、新材料热特性研究等领域的检测效率与精细度。
车规级芯片作为汽车电子系统的重心,其可靠性直接关系到汽车的安全运行,失效分析是对提升芯片质量、保障行车安全意义重大。在车规级芯片失效分析中,热红外显微镜发挥着关键作用。芯片失效常伴随异常发热,通过热红外显微镜分析其温度分布,能定位失效相关的热点区域。比如,芯片内部电路短路、元器件老化等故障,会导致局部温度骤升形成明显热点。从而快速定位潜在的故障点,为功率模块的失效分析提供了强有力的工具。可以更好的帮助车企优化芯片良率与安全性。热红外显微镜通过纳秒级瞬态热捕捉,揭示高速芯片开关过程的瞬态热失效机理。
热红外显微镜(Thermal EMMI )技术不仅可实现电子设备的故障精细定位,更在性能评估、热管理优化及可靠性分析等领域展现独特价值。通过高分辨率热成像捕捉设备热点分布图谱,工程师能深度解析器件热传导特性,以此为依据优化散热结构设计,有效提升设备运行稳定性与使用寿命。此外,该技术可实时监测线路功耗分布与异常发热区域,建立动态热特征数据库,为线路故障的早期预警与预防性维护提供数据支撑,从根本上去降低潜在失效风险。区分 LED、激光二极管的电致发光热点与热辐射异常,优化光电转换效率。国内热红外显微镜市场价
热红外显微镜的高精度热检测,为电子设备可靠性提供保障 。国内热红外显微镜市场价
致晟光电热红外显微镜采用高性能InSb(铟锑)探测器,用于中波红外波段(3–5 μm)的热辐射信号捕捉。InSb材料具有优异的光电转换效率和极低的本征噪声,在制冷条件下可实现高达nW级的热灵敏度和优于20mK的温度分辨率,适用于高精度、非接触式热成像分析。该探测器在热红外显微系统中的应用,提升了空间分辨率(可达微米量级)与温度响应线性度,使其能够对半导体器件、微电子系统中的局部发热缺陷、热点迁移和瞬态热行为进行精细刻画。配合致晟光电自主开发的高数值孔径光学系统与稳态热控平台,InSb探测器可在多物理场耦合背景下实现高时空分辨的热场成像,是先进电子器件失效分析、电热耦合行为研究及材料热特性评价中的关键。
国内热红外显微镜市场价