需要失效分析检测样品,我们一般会在提前做好前期的失效背景调查和电性能验证工作,能够为整个失效分析过程找准方向、提供依据,从而更高效、准确地找出芯片失效的原因。
1.失效背景调查收集芯片型号、应用场景、失效模式(如短路、漏电、功能异常等)、失效比例、使用环境(温度、湿度、电压)等。确认失效是否可复现,区分设计缺陷、制程问题或应用不当(如过压、ESD)。
2.电性能验证使用自动测试设备(ATE)或探针台(ProbeStation)复现失效,记录关键参数(如I-V曲线、漏电流、阈值电压偏移)。对比良品与失效芯片的电特性差异,缩小失效区域(如特定功能??椋?。 半导体失效分析中,微光显微镜可侦测失效器件光子,定位如 P-N 接面漏电等故障点,助力改进工艺、提升质量。锁相微光显微镜工作原理
RTTLIT E20 微光显微分析系统(EMMI)是专为半导体器件漏电缺陷检测量身打造的高精度检测设备,其系统搭载 -80℃制冷型 InGaAs 探测器与高分辨率显微物镜 ,构建起超高灵敏度检测体系 —— 可准确捕捉器件在微弱漏电流下产生的极微弱微光信号,实现纳米级缺陷的可视化成像。通过超高灵敏度成像技术,设备能快速定位漏电缺陷并完成深度分析,为工程师提供直观的缺陷数据支撑,助力优化生产工艺、提升产品可靠性。从芯片研发到量产质控,RTTLIT E20 以稳定可靠的性能,为半导体器件全生命周期的质量保障提供科学解决方案,是半导体行业提升良率的关键检测利器。国内微光显微镜售价晶体管和二极管短路或漏电时,微光显微镜依其光子信号判断故障类型与位置,利于排查电路故障。
对半导体研发工程师而言,排查的过程层层受阻。在逐一排除外围电路异常、生产工艺制程损伤等潜在因素后,若仍未找到症结,往往需要芯片原厂介入,通过剖片分析深入探究内核。
然而,受限于专业分析设备的缺乏,再加上芯片内部设计涉及机密,工程师难以深入了解其底层构造,这就导致他们在面对原厂出具的分析报告时,常常陷入 “被动接受” 的局面 —— 既无法完全验证报告的细节,也难以基于自身判断提出更具针对性的疑问或补充分析方向。
选择国产 EMMI 微光显微镜,既是拥抱技术自主,更是抢占效率与成本的双重优势!致晟光电全本土化研发实力,与南京理工大学光电技术学院深度携手,致力于光电技术研究和产业化应用,充分发挥其科研优势,构建起产学研深度融合的技术研发体系。
凭借这一坚实后盾,我们的 EMMI 微光显微镜在性能上实现更佳突破:-80℃制冷型探测器搭配高分辨率物镜,轻松捕捉极微弱漏电流光子信号,漏电缺陷定位精度与国际设备同步,让每一个细微失效点无所遁形。 热电子与晶格相互作用及闩锁效应发生时也会产生光子,在显微镜下呈现亮点。
微光显微镜技术特性差异
探测灵敏度方向:EMMI 追求对微弱光子的高灵敏度(可检测单光子级别信号),需配合暗场环境减少干扰;热红外显微镜则强调温度分辨率(部分设备可达 0.01℃),需抑制环境热噪声。
空间分辨率:EMMI 的分辨率受光学系统和光子波长限制,通常在微米级;热红外显微镜的分辨率与红外波长、镜头数值孔径相关,一般略低于 EMMI,但更注重大面积热分布的快速成像。
样品处理要求:EMMI 对部分遮蔽性失效(如金属下方漏电)需采用背面观测模式,可能需要减薄、抛光样品;
处理要求:热红外显微镜可透过封装材料(如陶瓷、塑料)探测,对样品破坏性较小,更适合非侵入式初步筛查。 介电层漏电时,微光显微镜可检测其光子定位位置,保障电子器件绝缘结构可靠,防止电路故障。无损微光显微镜按需定制
红外成像可以不破坏芯片封装,尝试定位未开封芯片失效点并区分其在封装还是 Die 内部,利于评估芯片质量。锁相微光显微镜工作原理
在微光显微镜(EMMI) 操作过程中,当对样品施加合适的电压时,其失效点会由于载流子加速散射或电子-空穴对复合效应而发射特定波长的光子。这些光子经过采集和图像处理后,可以形成一张信号图。随后,取消施加在样品上的电压,在未供电的状态下采集一张背景图。再通过将信号图与背景图进行叠加处理,就可以精确地定位发光点的位置,实现对失效点的精确定位。进一步地,为了提升定位的准确性,可采用多种图像处理技术进行优化。例如,通过滤波算法去除背景噪声,增强信号图的信噪比;利用边缘检测技术,突出显示发光点的边缘特征,从而提高定位精度。锁相微光显微镜工作原理