非病毒载体通常具有比病毒载体更低的转染效率,但由于它们被认为要安全得多,因此已被***研究。纳米颗粒递送系统,其中阳离子脂质纳米颗粒通过核酸的负磷酸基团装载,是一类主要的非病毒载体,显示出高生产力和装载效率。用于携带核酸的纳米颗粒系统在整体上可分为基于脂质或聚合物的纳米颗粒,在与核酸相互作用后,每种纳米颗粒都被称为“脂质复合物”或“多聚体”。这些复合物的细胞递送被认为是通过内吞作用发生的,然后内体逃逸到细胞质中。阳离子脂质体作为核酸的一种传递系统,具有一定的优势。首先,阳离子脂质体在体内给药后是可生物降解的。内源性酶的存在可以分解脂质体的脂质成分。脂质体在各种纳米载体之间****的生物相容性导...
1脂质体结构 脂质体根据室室结构和层状结构可分为单层囊泡(ULVs)、寡层囊泡(OLVs)、多层囊泡(MLV)和多泡脂质体(MVLs)。OLVs和MLV呈阴离?样结构,但分别存在2-5和>5个同?脂质双分?层。与MLV不同,MVLs包括数百个由单层脂质膜包围的?同??室,并呈现蜂窝状结构。根据颗粒??,ULVs可进?步分为?单层囊泡(SUVs,30-100nm)、?单层囊泡(LUVs,>100nm)和?单层囊泡(LUVs,>1000nm)。Arikaye(阿?卡星脂质体吸?悬浮液)因其?粒径(200-300nm)?被认为是LUV。Vyxeos(注射?柔红霉素:阿糖胞苷脂质体)是?种双...
脂质体成功降低了绿色荧光蛋白(GFP)的表达,并在H4II-E和HepG2细胞中显示出较低的细胞毒性。在其他研究中,精氨酸衍生物N,N-distearyl-N-methyl-N-2-(N’-arginyl)aminoethylammoniumchloride被用于阳离子脂质体与胆固醇的配制。将这些离子脂质体与c-MycsiRNA络合,并静脉注射给B16F10黑色素瘤小鼠(1.2mg/kg,每天1次,连续3天),导致B16F10**对紫杉醇增敏。另一项研究建议使用精氨酸基DiLA2脂质作为载脂蛋白b特异性siRNA递送的阳离子脂质体组分。经小鼠静脉给药(ED50,0.1mg/kg)后,DiLA2...
**近的另一项研究表明,全身递送携带**抑制因子miRNA的阳离子脂质体具有*****的潜力。MiRNA-34a是p53转录网络的一个组成部分,可调节**干细胞存活,因此被选为**抑制因子,而miR-143/145簇已知可抑制KRAS2及其下游效应物ras- 响应元件结合蛋白-1的表达。将含有DOTAP、胆固醇和DSPC-PEG2000的阳离子脂质体与miRNA-34a或miRNA-143/145络合为阳离子脂质复合体。在皮下异种移植模型和原位胰腺*异种移植模型中, 静脉注射该阳离子脂质复合体***抑制**生长?;虻菟陀玫南喙匮衾胱又侍?。microbubble脂质体载药递送效率基因递送用脂...
脂质体共价连接药物-脂质偶联载***式通过连接剂将药物分?与脂质共价连接是另?种在脂质体内装载药物的有效策略,例如Mepact。MDP是主要?兰?阳性菌细胞壁的组成部分,具有****应答的作?。由于MDP是?溶性低分?量分?,其脂质体在储存过程中存在包封效率低和药物泄漏等问题。为了提?MDP的脂溶性,通过肽间隔剂将MDP与PE连接,合成MTP-PE(muramyltripeptide-phosphatidylethanolamine)。在??理盐?重建冻?产物(MTP-PE,POPC和OOPS)时,MTP-PE的两亲分?嵌?脂质体的膜双层。脂质体内存在MTP-PE,未发现游离MTP-PE。Vy...
基于药代动?学机制和脂质体性质,脂质体的质量控制通常包括粒径和粒径分布、形态、层状结构、表?性质(zeta电位、PEGlated厚度和靶分?,如配体)、脂膜相变温度、载药效率、释放速率等。例如,脂质体的?层结构会影响药物的释放速度,?形态会影响脂质体在体内的循环时间。 健康组织和**组织之间的血管系统差异使EPR效应得以实现。反过来, 由于不太完美的细胞填充导致更多的泄漏性质, 血管在细胞中具有较大的间隙。 因此,脂质体通过逃离血管的被动靶向效应在**中积累。对几种不同**的被动靶向是由体内脂质体的大小和稳定性决定的。这可归因于它们的小尺寸延长了循环时间并在组织中外渗。因此,考虑到各...
对筛选的阳离子脂质进行了研究,以6.25mg/kg的剂量给食蟹猴全身给药载脂蛋白B特异性siRNA,据报道,在2周内,肝组织中载脂蛋白B的表达减少了50%以上。近年来,研究人员合成了多种阳离子脂质体,并试图找到一种可有效递送质粒DNA的阳离子脂质体组合物。在新合成的阳离子中,N',N',-dioctadecyl-N-4,8-diaza-10-aminodecanoylglycine(DODAG)制成的阳离子纳米脂质体对质粒DNA的转染效率比较高。此外,DODAG比转染试剂Lipofectamine2000更有效地将质粒DNA传递到OVCAR-3和HeLa细胞系。相比之下,基于理性的新型阳离子脂...
脂质体靶向递送中甘露糖配体修饰由于在巨噬细胞上发现了甘露糖受体,因此甘露糖已被用于修饰阳离子脂质体以供巨噬细胞递送。为了抑制由活化的巨噬细胞诱导的破骨细胞生成,将甘露糖基化阳离子脂质体与双链寡核苷酸NFkB诱饵络合。甘露糖阳离子脂质体/NFkB诱饵复合物有效诱导NFkB活化并抑制肿瘤坏死因子-a的产生。在另一项研究中,巨噬细胞靶向NFkB诱饵装载在甘露糖基化阳离子脂质体中,用于预防脂多糖诱导的肺部炎症。气管内给药后,甘露糖标记的阳离子脂质体/NFkB诱饵复合物***下调NFkB的表达,减少肿瘤坏死因子-a和白细胞介素-1b的释放。研究人员研究了茴香酰胺修饰的阳离子脂质体将寡核苷酸靶向递送至表达...
siRNA脂质体 RNA干扰(RNAi)途径允许siRNA和miRNAs负向调节蛋白表达。siRNA是21~23对核苷酸组成的双链RNA,可诱导同源靶mRNA沉默。为了发挥作用,双链siRNA分裂成两个单链RNA:乘客链和引导链。乘客链被argonaute-2蛋白降解,而引导链则被纳入RNAi诱导的沉默复合体中,该复合体结合与引导链互补的mRNA并将其切割。siRNA似乎具有***多种疾病的巨大潜力,因为它们可以很容易地下调各种靶mRNA,而不考虑它们的位置(即在细胞核或细胞质中),并且它们的特异性结合表明它们比传统化学药物诱导的副作用更少。作为一种新型的基于核酸的***策略,siR...
递送核酸的脂质体中的脂质成分脂质体的脂质组成可以影响阳离子脂质的结构性质及其转染效率。由3β[N(N',N'Dimethylaminoethane)carbamoyl]cholesterol,(DC-Chol)和DOPE组成的阳离子脂质体被认为是高效基因传递的代表性脂质体。对于质粒DNA传递,DC-Chol与DOPE的***摩尔比被发现为1:2。质粒DNA的转染效率随着DC-Chol与质粒DNA质量比的增大而降低,比较高转染效率为3:1。**近的一项研究报道了不同的内吞途径对阳离子脂质体组成的可能依赖性。由质粒DNA加DC-Chol或DOPE为基础的阳离子脂质组成的脂质体优先通过内吞作用进入细...
脂质体用于**的***LNPs在药物递送中的比较大单一应用是*****,因为LNPs包被抗**药物比游离药物具有更好的生物利用度和选择性。脂质纳米载体降低了***药物对正常组织的毒性,增加了疏水药物的水溶性,延长了药物停留时间,改善了对药物释放的控制。LNPs还通过增强通透性和滞留性(EPR)效应提高*****的疗效。**中快速但有缺陷的血管生成导致血管具有大开孔(>100nm大小),LNP可以很容易地通过。因此,**血管对LNPs的渗透性更强,允许它们在静脉注射时选择性地在**中积累。此外,****能失调的淋巴引流降低了LNPs离开**的速度,从而提高了它们的保留。由于EPR效应,LNPs在...
基于药代动?学机制和脂质体性质,脂质体的质量控制通常包括粒径和粒径分布、形态、层状结构、表?性质(zeta电位、PEGlated厚度和靶分?,如配体)、脂膜相变温度、载药效率、释放速率等。例如,脂质体的?层结构会影响药物的释放速度,?形态会影响脂质体在体内的循环时间。 健康组织和**组织之间的血管系统差异使EPR效应得以实现。反过来, 由于不太完美的细胞填充导致更多的泄漏性质, 血管在细胞中具有较大的间隙。 因此,脂质体通过逃离血管的被动靶向效应在**中积累。对几种不同**的被动靶向是由体内脂质体的大小和稳定性决定的。这可归因于它们的小尺寸延长了循环时间并在组织中外渗。因此,考虑到各...
商业脂质体产品,包括Visudyne和AmBisome,使?这种?法制造。MLV悬浮液在?压下通过?个狭窄的间隙,通过剪切?、湍流和速度梯度产?的流体空化?被分解,然后重新排列成更?的脂质体??帕??和粒度分布由均质过程的参数决定,如压?、处理周期、阀?和冲击设计、流速等;它们还受到样品性质的影响,包括散装介质的组成和粘度以及颗粒的初始尺?分布。不断增加的压?和处理循环会降低颗粒尺?和多分散性指数(PDI),但也会导致封装效率降低。脂质体中的相变温度是指脂质双分子层中脂质分子从一个状态转变为另一个状态所需的温度。甘肃成都脂质体载药 1脂质体结构 脂质体根据室室结构和层状结构可分为单层囊...
两者都含有一种可电离的脂质,在低pH值下带正电荷(使RNA络合),在生理pH值下为中性(减少潜在的毒性作用并促进有效载荷释放)。它们还含有聚乙二醇化脂质,以减少血清蛋白的抗体结合(调理)和吞噬细胞的***,从而延长体循环?;匀鸸镜难衾胱又?peg脂质:胆固醇:DSPC的摩尔比为(43:1.6:47:9.4),莫当纳疫苗的摩尔比为(50:1.5:38.5:10)。这些纳米颗粒直径为80 - 100纳米,每个脂质纳米颗粒含有大约100个mRNA分子。ALC-0315(辉瑞)和SM-102 (Moderna)这两种脂质都是叔胺,在低ph下质子化(因此带正电荷)。它们的碳氢链通过可生物降解的酯基连...
脂质体各组分对核酸递送效率的影响对于使用阳离子脂质体开发核酸***剂,一个先决条件是必须将核酸适当地递送到靶细胞并到达适当的亚细胞区室(例如,细胞质或细胞核)。已知阳离子脂质体的递送效率会受到阳离子脂质和辅助脂质类型及其组成的影响。阳离子脂质是纳米粒子的**成分,具有一个带正电的头基和一个或两个由碳氢链或类固醇结构组成的疏水尾区的共同结构。Felgner和同事报道了N-[1-(2,3-二聚氧基)丙基]-N,N,N-三甲基氯化铵(DOTAP)的合成,其具有一个单价阳离子头和两个碳氢化合物尾部,并用于制备小的单层脂质体。他们将DNA包裹的脂质体转染到小鼠L细胞中,并证明阳离子脂质中和了带负电荷...
基于碱性氨基酸的阳离子脂质体已被研究其增强血清中阳离子脂质体稳定性的潜力。对赖氨酸化胆固醇、组氨酸化胆固醇和精氨酸化胆固醇进行了检测, 赖氨酸化胆固醇和精氨酸化胆固醇脂基阳离子脂质体在含血清培养基中表现出 更有效的转染质粒DNA。精胺与胆固醇或长链碳氢化合物的偶联物已配制成脂质体。 将精氨酸标记的阳离子脂质和DOPE(1:1比例)与EGFP编码质粒DNA或RNA复配,电脉冲注入未成熟树突状细胞或树突状细胞前祖细胞。将核酸脉冲树突状细胞静脉注射到荷瘤小鼠体内,可诱导产生抗肿瘤细胞因子,提示阳离子脂质体 可用于生成核酸脉冲树突状抗**疫苗。将荧光标记引入载药脂质体的作用有荧光标记的定位和跟踪,...
脂质体成功降低了绿色荧光蛋白(GFP)的表达,并在H4II-E和HepG2细胞中显示出较低的细胞毒性。在其他研究中,精氨酸衍生物N,N-distearyl-N-methyl-N-2-(N’-arginyl)aminoethylammoniumchloride被用于阳离子脂质体与胆固醇的配制。将这些离子脂质体与c-MycsiRNA络合,并静脉注射给B16F10黑色素瘤小鼠(1.2mg/kg,每天1次,连续3天),导致B16F10**对紫杉醇增敏。另一项研究建议使用精氨酸基DiLA2脂质作为载脂蛋白b特异性siRNA递送的阳离子脂质体组分。经小鼠静脉给药(ED50,0.1mg/kg)后,DiLA2...
4PEG2000在脂质体中的作用 PEG2000是一种聚乙二醇(PEG)衍生物,常用于脂质体的表面修饰。它在脂质体中具有多种作用:1.稳定性增强:PEG2000可以在脂质体表面形成一层稳定的水合层,防止脂质体的聚集和沉淀,从而提高其在溶液中的稳定性。2.血液循环延长:脂质体表面修饰PEG2000可以降低脂质体被吞噬的速度,延长其在血液循环中的半衰期,从而增加药物的生物利用度。3.免疫原性降低:PEG2000可以掩盖脂质体表面的亲水性基团,减少脂质体与免疫系统的识别和***,降低免疫原性,提高脂质体的生物相容性。4.药物释放调控:PEG2000修饰的脂质体可以通过改变PEG链的长度和密...
**近的另一项研究表明,全身递送携带**抑制因子miRNA的阳离子脂质体具有*****的潜力。MiRNA-34a是p53转录网络的一个组成部分,可调节**干细胞存活,因此被选为**抑制因子,而miR-143/145簇已知可抑制KRAS2及其下游效应物ras- 响应元件结合蛋白-1的表达。将含有DOTAP、胆固醇和DSPC-PEG2000的阳离子脂质体与miRNA-34a或miRNA-143/145络合为阳离子脂质复合体。在皮下异种移植模型和原位胰腺*异种移植模型中, 静脉注射该阳离子脂质复合体***抑制**生长。脂质体的载药率怎么计算。天津济南脂质体载药脂质体的缓释作用***药物可通过脂质体的...
由于阿?卡星在?醇中的溶解度有限,在使??醇输注制备脂质体过程中,阿?卡星转移到半可溶性的凝聚状态,被包裹在脂质体的核?内部。令?惊讶的是,获得了较?的包封效率(在优化的制备参数下,游离药物为5.2%)和药脂?(~0.7)。由于其多阳离?性质,被包封的药物在脂质体膜上表现出低通透性,使脂质体在?液循环过程中保持稳定。阿糖胞苷(DepoCyte)、**(DepoDur)和布?卡因(Exparel)?溶液被包裹在MVLs 的腔室中(由94%的?腔和4%的脂质组成);因此,?体积的脂质体悬浮液中含有?量药物。为了进?步提?包封效率和缓释,可采?将药物化合物从单质??机酸盐转化为?质?或三质??机酸盐...
寡核苷酸脂质体 寡核苷酸是一种<50个碱基的短核酸聚合物。AS-ODN(反义寡脱氧核苷酸)是与互补的mRNA序列结合的单链DNA或RNA。由于AS-ODNs可以下调某些RNA并抑制靶蛋白的表达,因此它们被认为具有作为核酸药物的潜力。然而,为了开发基于寡核苷酸的***方法,必须克服寡核苷酸在生理环境中的不稳定性及其细胞摄取不足的问题。Zhang及其同事开发了由1,2-二油?;?3-三甲铵基丙烷(DOTAP)、磷脂酰胆碱和胆固醇组成的阳离子脂体,用于针对Raf-1蛋白丝氨酸/苏氨酸激酶(一种已知的*****靶标信号蛋白)的AS-ODNs全身递送。他们观察到,全身给药AS-ODNs与阳离子...
脂质体的粒径和粒径分布脂质体的整个药代动?学过程,如全?循环和MPS***、外渗到组织间质、细胞外基质间质运输以及细胞摄取和细胞内运输,都是依赖于尺?的。粒径<200nm的颗粒可降低?清蛋?的调理作?,降低MPS的***率。在????病模型中,对于Myocet来说,较?的脂质体具有更?的抗**功效和增加的平均?存时间。粒径为2.0-3.5μm的Mepact可促使单核细胞/巨噬细胞吞噬,触发*****的免疫调节作?。Singh等?发现,含有不同颗粒??的佐剂脂质体(ArmyLiposomeFormulation,ALF)的疫苗会产?不同的免疫反应,即树突状细胞更有效地摄取10-200nm范围内的...
脂质体共价连接药物-脂质偶联载***式通过连接剂将药物分?与脂质共价连接是另?种在脂质体内装载药物的有效策略,例如Mepact。MDP是主要?兰?阳性菌细胞壁的组成部分,具有****应答的作?。由于MDP是?溶性低分?量分?,其脂质体在储存过程中存在包封效率低和药物泄漏等问题。为了提?MDP的脂溶性,通过肽间隔剂将MDP与PE连接,合成MTP-PE(muramyltripeptide-phosphatidylethanolamine)。在??理盐?重建冻?产物(MTP-PE,POPC和OOPS)时,MTP-PE的两亲分?嵌?脂质体的膜双层。脂质体内存在MTP-PE,未发现游离MTP-PE。Vy...
脂质体的稳定性和储存是确保其在制备后能够长期保持其结构完整性和功能性的重要方面。以下是确保脂质体稳定性和适当储存的一些关键考虑因素:1.温度控制:脂质体通常对温度敏感,因此在储存和运输过程中需要严格控制温度。通常,脂质体应存储在冰箱或冷冻条件下,避免高温和冻结2.光照?;ぃ褐侍宥怨饷舾?,容易被紫外光照射破坏,因此应该避免直接阳光照射??梢匝≡癫煌腹獾娜萜鹘写⒋?,或者使用防紫外线包装材料。3.惰性气体?;ぃ貉跗退侄灾侍逦榷ㄐ杂胁焕跋欤虼嗽诖⒋婀讨校梢圆捎枚栊云澹ㄈ绲┍;ぃ跎傺跗退值慕哟?.pH值控制:某些脂质体制剂对pH值敏感,因此在储存过程中需要控制环境的酸碱度。...
脂质体靶向递送中RGD配体修饰尽管阳离子脂质体具有在体内递送核酸的潜力,但其递送到特定靶点仍然是一个主要挑战。为了增强携带核酸的阳离子脂质体在靶组织中的分布,研究人员用多肽和小分子修饰了脂质体表面。例如,研究了Arg-Gly-Asp(RGD)肽修饰的脂质体增强核酸向整合素受体表达细胞传递的能力。负载P糖蛋白特异性siRNA的RGD修饰阳离子脂质体对整合素受体表达的人乳腺*MCF7/A细胞的递送率更高,导致P糖蛋白的***沉默。与此一致的是,分子成像显示,与小鼠模型的邻近正常组织相比,MCF7/A**组织中RGD修饰的阳离子脂质体和siRNA的分布更高。在**近的一项研究中,用环RGD和辛精氨酸...
固体脂质纳米颗粒和纳米结构脂质载体虽然脂质体作为药物载体是有用的,但它们需要使用有机溶剂的复杂生产方法,在包裹药物方面表现出低效率,并且难以大规模执行。固体脂质纳米颗粒(SLN)和纳米结构脂质载体(NLC)的开发是为了解决这些缺点。传统的脂质体由液晶脂质双层组成,而SLN由固体脂质组成,和NLC由固体和液晶脂质混合物组成。SLN和NLC的粒径在40~1000nm之间。SLN和NLC表现出增强的物理稳定性,解决了脂质体基础配方的主要限制之一。SLN和NLC还具有更高的装载能力和更高的生物利用度,不需要使用有机溶剂就可以大规模生产,并且比其他LNPs更稳定。此外,分子在固体状态下迁移率的降低使得S...
脂质体靶向递送中RGD配体修饰尽管阳离子脂质体具有在体内递送核酸的潜力,但其递送到特定靶点仍然是一个主要挑战。为了增强携带核酸的阳离子脂质体在靶组织中的分布,研究人员用多肽和小分子修饰了脂质体表面。例如,研究了Arg-Gly-Asp(RGD)肽修饰的脂质体增强核酸向整合素受体表达细胞传递的能力。负载P糖蛋白特异性siRNA的RGD修饰阳离子脂质体对整合素受体表达的人乳腺*MCF7/A细胞的递送率更高,导致P糖蛋白的***沉默。与此一致的是,分子成像显示,与小鼠模型的邻近正常组织相比,MCF7/A**组织中RGD修饰的阳离子脂质体和siRNA的分布更高。在**近的一项研究中,用环RGD和辛精氨酸...
microRNA脂质体 microRNA是真核细胞中发现的短(约22mer)非编码RNA,通过结合互补的mRNA序列发挥生物调节剂的作用。miRNA以初级miRNA的形式从其编码的核基因转录,其长度为数百个核苷酸。RNaseIII酶,Drosha,将初级miRNA加工成pre-miRNA(长度为70个核苷酸),携带一个特征的发夹环。然后pre-miRNA移动到细胞质中,在那里RNaseIII酶Dicer产生成熟的miRNA和乘客链。***,成熟的miRNA被整合到RNAi诱导的沉默复合体中,以降解它们的靶mRNA。由DOTMA、胆固醇和vitaminETPGS1k琥珀酸盐组成的阳离子...
脂质体制备方法:溶剂注射技术这种技术是将脂质物质和亲脂物质溶解在与?混溶的有机溶剂中,然后将有机相注??量的?缓冲液中,从??发形成?的单层脂质体。在其他改进的?法中,通过管状(例如Shirasu多孔玻璃膜或中空纤维结构)中的y型连接器和膜接触器注?/注?两流溶液装置,以改善有机相与?相的微混合。溶剂在?相介质中迅速扩散,界?湍流导致??均匀的脂质体形成。根据制备条件的不同,可以制备80nm?300nm之间的粒径,并且不需要额外的能量输?来减?粒径,例如超声和挤压。应使?蒸发、冻?、透析或滤除有机溶剂,并将脂质体悬浮液浓缩?所需体积。?醇由于其安全性,通常被?作有机溶剂。各种制备参数,包括流速...
主动药物装载?法,也称为远程药物装载?法,涉及在空脂质体产?后装载药物制剂。pH值或离?浓度的跨膜梯度是促进药物跨膜扩散进?脂质体内核的驱动?。药物包载过程?约需要5~30分钟,可达到较?的装载效率(90%以上)。Doxil是基于硫酸铵跨膜梯度的药物负载的典型例?。由于脂质体核?的(NH4)2SO4浓度远?于外界介质,具有?渗透性和?醇-缓冲分配系数的DOX-NH2中性分?通过脂质双分?层扩散,具有纤维状结晶形式的(DOX-NH3)2SO4沉淀在脂质体的核?产?。(DOX-NH3)2SO4的低溶解度使脂质体内渗透压降?比较低,从?保持脂质体的完整性。对于Myocet产品临床使?前先加载DOX。...