微孔阵列芯片在液滴分散与生化反应中的应用:微孔阵列作为微流控芯片的主要功能单元,其加工精度直接影响液滴生成效率与反应均一性。公司通过光刻胶模塑、激光微加工等技术,在PDMS或硬质塑料基板上制备直径5-50μm、间距可控的微孔阵列,孔密度可达10^4个/cm2以...
芯弃疾JX-8B数字ELISA高敏检测产品,使用现有平台就能做的单分子免疫检测; 参考的其他高灵敏检测方法: 两种更多测试的模拟分析信号放大技术是免疫PCR和生物条形码分析。免疫PCR通过将检测抗体标记为DNA分子,然后使用PCR进行扩增和定量...
创新性的解决方案:芯弃疾JX-8B数字ELISA 我公司推出的数字化高灵敏ELISA芯片检测产品应用场景:适合生物实验室、医学实验室、科研市场、产品预研、产品开发、ELISA检测、动物病情检测等各种应用场景应用范围:各种高灵敏多重免疫检测,可替代各种...
美国Caliper Life Sciences公司Andrea Chow博士认为,微流控技术的成功取决于技术上的跨界联合、技术和应用,这三个因素是相关的。他说:“为形成联合,我们尝试了所有可能达到一定复杂性水平的应用。从长远且严密的角度来对其进行改进,我们发现...
硬质塑料微流控芯片的耐候性设计与工业应用:在工业检测与环境监测领域,硬质塑料微流控芯片因耐高低温、抗化学腐蚀的特性成为优先。公司针对PMMA、PS等材料开发了紫外稳定化处理工艺,使芯片在-20℃至60℃温度范围内保持结构稳定,适用于户外水质监测与工业过程控制。...
芯弃疾JX-8B数字ELISA,每个生物/医学实验室都用得起的单分子免疫检测; 单分子的检测原理:由Simoa数字免疫分析法实现的超灵敏度已在先前讨论过。简而言之,类似免疫分析中的酶-底物反应是在相对较大的反应体积(50-100μL)中进行的,在信号...
美国Caliper Life Sciences公司Andrea Chow博士认为,微流控技术的成功取决于技术上的跨界联合、技术和应用,这三个因素是相关的。他说:“为形成联合,我们尝试了所有可能达到一定复杂性水平的应用。从长远且严密的角度来对其进行改进,我们发现...
多元化材料微流控芯片定制加工技术解析:微流控芯片的材料选择直接影响其功能性与适用场景,Bloom-OriginSemiconductor提供基于PDMS软硅胶、硬质塑料、玻璃、硅片等多种材料的定制加工服务。其中,PDMS凭借良好的生物相容性、透光性及易加工...
微流控芯片对于胰岛素的补充检测:抗胰岛素自身抗体是Ⅰ型糖尿病中出现的抗体,但当胰岛素被固定在检测平台上时,表位结合位点的关键三级结构发生改变,故而难以用常规方法检测,Zhang等在芯片表面喷涂生物相容的支链聚乙二醇层,用以保护胰岛抗原的天然构象,该芯片可以在低...
微流控芯片在POCT设备中的小型化设计与加工:POCT(即时检验)设备对微流控芯片的小型化、低成本与易用性提出了极高要求。公司通过微流道集成设计,将样品预处理、反应、检测等功能压缩至25mm×25mm芯片内,配合毛细虹吸与重力驱动流路,省去外部泵阀系统,实现无...
大脑微流控芯片:与神经元和细胞间相互作用直接相关的因素在脑组织功能的情况下起着重要作用。大脑及其组织的研究在很大程度上是复杂的,这使得诸如培养皿或培养瓶之类的2D模型无效,因为这些系统无法模拟大脑的实际生理环境。为了克服这一局限性,研究人员目前正在研究开发大脑...
微流控芯片技术是生物医学应用领域的新兴工具。微流控芯片具有在不同材料(玻璃,硅或聚合物,如聚二甲基硅氧烷或PDMS,聚甲基丙烯酸甲酯或PMMA)上的一组凹槽或微通道。形成微流控芯片的微通道彼此互连以获得期望的结果。微流控芯片中的微通道的组织通过穿透芯片的输入和...
什么是微流控技术?微流控技术是一门精确控制和操纵流体的科学技术,这些流体在几何空间上被限制在小规模流道中,通常流道系统的直径低于100μm。对于科学家和工程师来讲,微流体一词的使用方式存在不同;对许多教授来说,微流控是一个科学领域,主要应用于通过直径在100微...
微流控芯片与传感器集成的模块化加工方案:为满足“芯片即实验室”的集成化需求,公司提供微流控芯片与传感器的模块化加工服务,实现流体控制与信号检测的一体化设计。在生物传感芯片中,微流道下游集成电化学传感器(如碳电极阵列)或光学传感器(如荧光检测窗口),通过微阀控制...
对于微流控芯片,必须将材料从微通道中放入和取出,还要从纳升级流量的流体中获得可靠信号。一些研究者建议将微流控技术与“中等流体”结合,——以小型化的方式附加到中等尺寸的设备中,可以浓缩样品,易于检测。生物学家还受他们所使用微孔板的几何限制。Caliper和其他的...
微米级尺度微流控芯片的精密加工与应用:在0.5-5μm微米级尺度微流控芯片加工领域,公司依托MEMS光刻、深硅刻蚀及纳米压印等技术,实现亚微米级精度的微流道、微孔阵列及三维结构制造。电镜下可见的精细流道网络,其宽度误差可控制在±50nm以内,适用于单分子检测、...
什么是微流控技术?微流控技术是一门精确控制和操纵流体的科学技术,这些流体在几何空间上被限制在小规模流道中,通常流道系统的直径低于100μm。对于科学家和工程师来讲,微流体一词的使用方式存在不同;对许多教授来说,微流控是一个科学领域,主要应用于通过直径在100微...
对于微流控芯片,必须将材料从微通道中放入和取出,还要从纳升级流量的流体中获得可靠信号。一些研究者建议将微流控技术与“中等流体”结合,——以小型化的方式附加到中等尺寸的设备中,可以浓缩样品,易于检测。生物学家还受他们所使用微孔板的几何限制。Caliper和其他的...
特定设计芯片的批量生产也降低了其成本。Caliper的旗舰产品是LabChip 3000新药研发系统,其微流体成分分析可以达到10万个样品,还有用于高通量基因和蛋白分析的LabChip 90 电泳系统。据Caliper宣称,75 %的主要制药和生物技术公司都在...
微流控芯片的硅质材料加工工艺:是在硅材料的加工中,光刻(lithography)和湿法刻蚀(wetetching)技术是2种常规工艺。由于硅材料具有良好的光洁度和很成熟的加工工艺,主要用于加工微泵、微阀等液流驱动和控制器件,或者在热压法和模塑法中作为高分子聚合...
微流控芯片小批量生产的成本优化策略:针对研发阶段与中小批量订单需求,公司构建了“快速原型-工艺优化-小批量试产”的全流程成本控制体系。在快速原型阶段,采用3D打印硅模(成本较传统光刻降低60%)与手工键合,7个工作日内交付首版样品;工艺优化阶段通过DOE(实验...
肠道微流控芯片(GoC):GoC系统模仿人类肠道的生理学。它解释了肠道的主要功能,即消化、营养物质的吸收、肠神经的调节、体内废物的排泄、以及伴随微生物共生体的人体肠道的病理生理学。GoC模型主要用于精确复制具有所需微流控参数的肠道体内环境。Kim等人研究了当人...
高聚物材料加工工艺:是以高聚物材料为基片加工微流控芯片的方法主要有:模塑法、热压法、LIGA技术、激光刻蚀法和软光刻等。模塑法是先利用半导体/MEMS光刻和蚀刻的方法制作出通道部分突起的阳模,然后在阳模上浇注液体的高分子材料,将固化后的高分子材料与阳模剥离后就...
微流控芯片在石英和玻璃的加工中,常常利用不同化学方法对其表面改性,然后可以使用光刻和蚀刻技术将微通道等微结构加工在上面。玻璃材料的加工步骤与硅材料加工稍有差异,主要步骤有:1)在玻璃基片表面镀一层 Cr,再用甩胶机均匀的覆盖一层光刻胶;2)利用光刻掩模遮挡,用...
特定设计芯片的批量生产也降低了其成本。Caliper的旗舰产品是LabChip 3000新药研发系统,其微流体成分分析可以达到10万个样品,还有用于高通量基因和蛋白分析的LabChip 90 电泳系统。据Caliper宣称,75 %的主要制药和生物技术公司都在...
微流控芯片技术采用先进的MEMS和半导体跨界创新策略,是生命科学和生物医学领域的新兴科学。该技术能够有效控制液体的物理化学反应。由于其微型缩小方法,它带来了高质量交换和高通量。它主要用于药物发现、蛋白质组学、药物筛选、临床分析和食品创新。目前,各种类型的微流控...
高标准PDMS微流控芯片产线的批量生产能力:依托自研单分子系列PDMS芯片产线,公司建立了从材料制备到成品质检的全流程标准化体系。PDMS芯片生产包括硅模制备、预聚体浇筑、固化切割、表面改性及键合封装五大工序,其中关键环节如硅模精度控制(±1μm)、表面亲疏水...
高聚物材料加工工艺:是以高聚物材料为基片加工微流控芯片的方法主要有:模塑法、热压法、LIGA技术、激光刻蚀法和软光刻等。模塑法是先利用半导体/MEMS光刻和蚀刻的方法制作出通道部分突起的阳模,然后在阳模上浇注液体的高分子材料,将固化后的高分子材料与阳模剥离后就...
标准化PDMS芯片产线:公司自建的PDMS芯片产线采用全自动化模塑工艺,涵盖原料混炼、真空脱泡、高温固化(80℃/2 h)及等离子亲水化处理等关键环节。产线配备高精度模具(公差±2 μm)与光学检测系统,可批量生产单分子检测芯片、液滴生成芯片等产品。例如,液滴...
高聚物材料加工工艺:是以高聚物材料为基片加工微流控芯片的方法主要有:模塑法、热压法、LIGA技术、激光刻蚀法和软光刻等。模塑法是先利用半导体/MEMS光刻和蚀刻的方法制作出通道部分突起的阳模,然后在阳模上浇注液体的高分子材料,将固化后的高分子材料与阳模剥离后就...