高聚物材料加工工艺:是以高聚物材料为基片加工微流控芯片的方法主要有:模塑法、热压法、LIGA技术、激光刻蚀法和软光刻等。模塑法是先利用半导体/MEMS光刻和蚀刻的方法制作出通道部分突起的阳模,然后在阳模上浇注液体的高分子材料,将固化后的高分子材料与阳模剥离后就得到了具有微结构的基片,之后与盖片(多为玻璃)封接后就制得高聚物微流控芯片。这一方法简单易行,不需要高技术设备,是大量生产廉价芯片的方法。热压法也需要事先获得适当的阳模。完善 PDMS 芯片产线覆盖来料加工、生产、质检,支持高标准批量交付。采用MEMS加工的微流控芯片图片
微米级尺度微流控芯片的精密加工与应用:在0.5-5μm微米级尺度微流控芯片加工领域,公司依托MEMS光刻、深硅刻蚀及纳米压印等技术,实现亚微米级精度的微流道、微孔阵列及三维结构制造。电镜下可见的精细流道网络,其宽度误差可控制在±50nm以内,适用于单分子检测、液滴生成等超高精度场景。例如,在单分子免疫检测芯片中,微米级微孔阵列可实现单个生物分子的捕获与荧光信号放大,检测灵敏度较传统方法提升10倍以上。该尺度芯片的加工难点在于材料刻蚀均匀性与表面粗糙度控制,公司通过干湿结合刻蚀工艺与表面化学修饰技术,解决了高深宽比结构(如10:1以上)的加工瓶颈,成功应用于外泌体分选、循环肿瘤细胞捕获等前沿生物医学领域,为精细医疗提供器件支撑。青海微流控芯片原料单分子级 PDMS 芯片产线通过超净加工,提升检测灵敏度至单分子级别。
安捷伦已有一些仪器使用趋向于具有更多可用性方面的经验,并将这些经验应用到了微流体技术开发上。微流体和生物传感器的项目经理Kevin Killeen博士在接受采访时说,安捷伦的目标是为终端使用者解除负担,“由适宜的仪器产品组装成的系统可以让非专业人士操纵专业设备”。微流体技术也需要适时表现出其自身的实用性和可靠性,例如,纳米级电喷雾质谱分析(nano-electrospray MS)不必考虑其顶端的闭合及边带的加宽,Killeen补充道:“对于生物学家来说,微流控技术的价值就在于此?!?/p>
微流控芯片在石英和玻璃的加工中,常常利用不同化学方法对其表面改性,然后可以使用光刻和蚀刻技术将微通道等微结构加工在上面。玻璃材料的加工步骤与硅材料加工稍有差异,主要步骤有:1)在玻璃基片表面镀一层 Cr,再用甩胶机均匀的覆盖一层光刻胶;2)利用光刻掩模遮挡,用紫外光照射,光刻胶发生化学反应;3)用显影法去掉已曝光的光胶,用化学腐蚀的方法在铬层上腐蚀出与掩模上平面二维图形一致的图案;4)用适当的刻蚀剂在基片上刻蚀通道;5)刻蚀结束后,除去光刻胶,打孔后和玻璃盖片键合。标准光刻和湿法刻蚀需要昂贵的仪器和超净的工作环境,无法实现快速批量生产。微米级微流控芯片通过电镜观测确保结构精度,适用于液滴分散与单分子分析。
心脏组织微流控芯片(HoC)是一种先进的OoC,它模仿了服用剂型或特定药物分子后人类心脏的整体生理学。使用该芯片已经观察到一些不良反应。Mathur等人在2015年证明了动物试验不足以估计测试药物分子相对于人体的确切药代动力学和药效学。为此,微流控芯片技术在心血管疾病研究,心血管相关药物开发,心脏毒性分析以及心脏组织再生研究中起着至关重要的作用。Sidorov等人于2016年创建了一个I-wired HoC。他们检测到心肌收缩,这是通过倒置光学显微镜测量的。此外,工程化的3D心脏组织构建体(ECTC)现在能够在正常和患病条件下复制心脏组织的复杂生理学。图1C显示了心脏组织微流控芯片的示意图,其中上层由心脏上皮细胞组成,下层由心脏内皮细胞组成。两层都被多孔膜隔开。它还包括有助于抽血的真空室。微流控技术能够把样本检测整个过程集中在几厘米的芯片上。宁夏微流控芯片共同合作
梯度涂层设计实现微流控芯片内细胞定向迁移,用于一些研究。采用MEMS加工的微流控芯片图片
微流控芯片的未来发展与公司技术储备:面对微流控技术向集成化、智能化发展的趋势,公司持续投入三维多层流道加工、芯片与微纳传感器/执行器的异质集成,以及生物相容性材料创新。在技术储备方面,已突破10μm以下尺度的纳米流道加工(结合电子束光刻与纳米压?。?,为单分子DNA测序芯片奠定基础;开发了基于形状记忆合金的微阀驱动技术,实现芯片内流体的主动控制;储备了可降解聚合物(如聚乳酸-羟基乙酸共聚物,PLGA)微流控芯片工艺,适用于体内植入式检测设备。未来,公司将聚焦“芯片实验室”全集成解决方案,推动微流控技术在个性化医疗、环境监测、食品安全等领域的深度应用,通过持续创新保持在微纳加工与生物传感芯片领域的技术地位。采用MEMS加工的微流控芯片图片