蛋白质翻译后修饰的重要性:翻译后修饰可以发生在蛋白质生命周期的任何阶段。例如,许多蛋白质在翻译完成后不久就被修饰,以介导适当的蛋白质折叠或稳定,或将新生蛋白质引导到不同的细胞区室(例如,细胞核、膜)。折叠和定位完成后发生其他修饰,以刺激或灭活催化活性或以其他方式影响蛋白质的生物活性。蛋白质也与靶向降解蛋白质的标签共价连接。除了单一的修饰外,蛋白质通常还通过翻译后切割和通过蛋白质成熟的分步机制增加功能基团的组合进行修饰。分析蛋白质及其翻译后修饰对于心脏病、神经退行性疾病和糖尿病的研究尤为重要。PTMs 的特征,虽然具有挑战性,但提供了对病因学过程下的细胞功能的无价的洞察。在技术上,研究翻译后修饰蛋白的主要挑战是开发特异性的检测和纯化方法。幸运的是,这些技术障碍正在用各种新的和精炼的蛋白质组学技术来克服。糖基化蛋白质翻译修饰组学主要在复杂的多细胞或组织形成过程中起关键作用。江苏蛋白质棕榈酰化修饰组学主要技术
乙?;奘蔚鞍鬃檠вτ梅较颍?、乙?;奘斡胂赴虮泶锏骺?、表观调控、细胞凋亡、细胞代谢、信号转导、蛋白质稳定性等生理过程研究。2、乙酰化引起的代谢疾病、代谢紊乱发生等疾病机理研究。乙?;镅б庖澹?、调节DNA-蛋白、蛋白-蛋白相互作用;2、与其他PTMs发生crosstalk;3、调节酶活性;4、调控蛋白亚细胞定位。生物领域各个研究方面,如:1、农林领域:抗逆胁迫机制,生长发育机制,育种?;ぱ芯康龋?、 畜牧业:肉类及乳品质研究,致病机理研究等。广州丙?;奘蔚鞍字首檠Ъǖ鞍字史牒笮奘渭负醪斡肓讼赴姓I疃墓?。
乙酰化修饰蛋白组学简介:乙?;前岩恢忠阴9倌芑盘砑拥搅硪恢钟谢衔锷?,并进行结合的过程。乙酰化也是细胞内蛋白质翻译后修饰的一种重要形式,其主要发生在组蛋白赖氨酸上,是由组蛋白乙酰转移酶 (HATs) 催化的,其反过程去乙酰化由组蛋白去乙酰酶 (Histone deacetylases,HDs 或者 HDACs) 催化的。关键组蛋白的 N-末端富含赖氨酸,生理条件下带正电,按照组成可以分为 5 种,包括:关键组蛋白(core histone):H2A、H2B、H3、H4;连接组蛋白(linker histone):H1。组蛋白结构高度保守,尤其是 H4。关键组蛋白由球形部和尾部构成,球形部借 Arg 与磷酸二脂骨架间的静电作用使 DNA 分子缠绕在组蛋白关键上,形成核小体,尾部含有大量 Arg 和 Lys,为转译后修饰的部位。H1 多样性,具有属和组织特异性。
蛋白质翻译后修饰组学技术原理:首先将蛋白样本酶解成肽段混合物,然后使用液相色谱对酶解后的肽段混合物进行组分分离以降低样本复杂程度,然后通过高质量的修饰类抗体和生物材料对修饰肽段进行富集,之后上样至液相色谱 - 串联质谱中进行分析,通过相应的数据库检索匹配,一次可鉴定成百上千个修饰位点。蛋白质磷酸化位点分析样品经酶解后,用 TiO2 微球对磷酸化肽段进行富集,富集后的产物由质谱分析,并通过软件完成数据检索。琥珀?;奘蔚鞍字首榧际跆氐悖翰捎弥髁骺固迩缀透患椒?,特异性高,富集效率好。蛋白质乙?;彩且恢挚赡娴拿复俜从?。
磷酸化修饰蛋白组学应用:蛋白质组(Proteome)泛指一个生命体内所有蛋白质,蛋白质组学(Proteomics)是以蛋白质组为研究对象,研究细胞、组织或生物体蛋白质组成及其变化规律的科学,是对蛋白质进行定性、定量及功能的分析。定性分析包括鉴定蛋白质的序列、PTM及蛋白之间的相互作用,对比来看,磷酸化蛋白质组(Phosphoproteome)就是蛋白质组中全部的磷酸化蛋白质,而磷酸化蛋白质组学(Phosphoproteomics,下文简称PP)就是针对磷酸化蛋白质的全方面的分析,包括对磷酸化的鉴定、定位和定量。本来属于蛋白质组学的一个分支,但随着研究的深入,人们在各个领域关于PP都有重大发现,基于PP的研究也越来越多。蛋白质翻译后修饰是影响蛋白质功能并调节整个细胞过程的重要方式。广州丙酰化修饰蛋白质组学鉴定
蛋白质翻译后修饰发挥十分重要的调控作用。江苏蛋白质棕榈酰化修饰组学主要技术
定量N-糖基化蛋白质翻译修饰组学:蛋白质的N-糖基化位点修饰是重要的蛋白质翻译后修饰之一,主要在复杂的多细胞或组织形成过程中起关键作用。蛋白质的N-糖基化修饰位点具有保守的氨基酸序列NX(S/T)(其中X为除脯氨酸以外的其它氨基酸)凝集素亲和法是目前糖蛋白质组学中应用普遍的分离富集方法。凝集素(lectin)是一类糖结合蛋白质,能专一识别某一特殊结构的单糖或聚糖中特定的糖基序列而与之结合,它们与糖链可逆非共价结合,糖蛋白或糖肽被凝集素捕获之后,通常用特定的单糖通过竞争结合凝集素将糖蛋白或糖肽洗脱下来。江苏蛋白质棕榈?;奘巫檠е饕际?/p>