阿拉丁不断致力于将自己的产品和对客户的服务达到高质量标准,目前,用纳米粒子进行催化反应可以直接用纳米微粒如铂黑、银、氧化铝、氧化铁等在高分子聚合物氧化、还原及合成反应中做催化剂,可提高反应效率,利用纳米镍粉作为火箭固体燃料反应触媒,燃烧效率可提高100倍;催化反应还表现出选择性,如用硅载体镍催化剂对丙醛的氧化反应表明,镍粒径在5nm以下时选择性急剧变化,醛分解得到控制,生成酒精的选择性急剧上升。在磁性材料方面有许多应用,例如:可以用纳米粒子作为长久磁体材料,磁记录材料和磁流体材料。纳米粒子体积效应使得通常在高温烧结的材料如SiC、WC、BC等在纳米状态下在较低温度下可进行烧结,获得高密度的烧结体。生物材料:用于与生命系统接触和发生相互作用的。氢化蓖麻油 CAS:8001-78-3
阿拉丁材料科学试剂品类中的碳纳米材料--富勒醇可普遍应用在核磁共振造影、抗HIV药物、抗病药物、化疗药物、化妆品添加剂和科研等诸多领域。石墨烯是一种由碳原子构成的单原子层片状结构的新材料,有极好的透光性和导热性,是已知的较薄、坚硬、电阻率较小的材料。我公司制备的石墨烯比表面在500~1000m2/g,厚度在0.55~3.74nm.石墨烯具有非常高的比表面,难以在极性或非极性溶剂中分散。目前我们在石墨烯溶液中加入分散剂,较声得到分散均匀稳定的石墨烯分散液。纳米石墨烯片具有较大的形状比(直径/厚度比),具有优良的导电,润滑,耐腐,耐高温等特性。本公司制备的纳米石墨烯片厚度在4~20nm,微片大小在5~10μm,小于20层。三环[5.2.1.0,2,6]癸烷二甲醇 CAS:26896-48-0纳米材料作为药物的传送工具已成为当前的研究热点。
阿拉丁材料科学试剂中的量子点具有宽的激发谱和窄的发射谱。使用同一激发光源就可实现对不同粒径的量子点进行同步检测,因而可用于多色标记,极大地促进了在荧光标记中的应用。而传统的有机荧光染料的激发光波长范围较窄,不同荧光染料通常需要多种波长的激发光来激发,这给实际的研究工作带来了很多不便。此外,量子点具有窄而对称的荧光发射峰,且无拖尾,多色量子点同时使用时不容易出现光谱交叠。量子点具有较大的斯托克斯位移。量子点不同于有机染料的另一光学性质就是宽大的斯托克斯位移,这样可以避免发射光谱与激发光谱的重叠,有利于荧光光谱信号的检测。
材料科学是一个跨学科领域,是结合冶金,陶瓷,固态物理学和化学的综合学科,材料科学领域主要是用于设计和发现新材料、特别是固体材料。材料科学试剂侧重于新型材料的合成与制备、材料的改性和新型材料的收集,为科研活动提供研发素材。阿拉丁材料科学试剂,可以提供多品类的更节能、更坚固、更科技的材料科学相关试剂产品。包括替代能源、生物材料、金属与陶瓷材料、纳米材料、有机与印刷电子材料、高分子材料、有机/无机杂化材料、3D生物打印材料等。替代能源是指,技术上可行,经济上合理,环境和社会可以接受,能确保供应和替代常规化石能源的。
阿拉丁材料科学试剂中的量子点生物相容性好,经过各种化学修饰之后,可以进行特异性连接,其细胞毒性低,对生物体危害小,可进行生物标记和检测。在各种量子点中,硅量子点具有较佳的生物相容性。对于含镉或铅的量子点,有必要对其表面进行包裹处理后再开展生物应用。量子点的荧光寿命长。有机荧光染料的荧光寿命一般为几纳秒(这与很多生物样本的自发荧光衰减的时间相当)。而具有直接带隙的量子点的荧光寿命可持续数十纳秒(20-50ns),具有准直接带隙的量子点如硅量子点的荧光寿命则可持续较过100μs。这样在光激发情况下,大多数的自发荧光已经衰变,而量子点的荧光仍然存在,此时即可得到无背景干扰的荧光信号。随着纳米技术在电子材料领域的不断发展,纳米电子材料产品得到了越来越普遍的应用。2-碘丙酸乙酯 CAS:31253-08-4
陶瓷材料大多是氧化物、氮化物、硼化物和碳化物等。氢化蓖麻油 CAS:8001-78-3
阿拉丁材料科学试剂中的石墨烯分散液是在氧化石墨烯分散液中加入还原剂、分散剂,在还原过程中形成的分散液。该分散液固含量在0.4~0.5%,厚度在0.55~3.74nm,,微片大小在0.5-3μm左右,总氧含量在3%~5%左右,是分散均匀的石墨烯分散液。氧化石墨烯表面具有大量含氧基团,具有很好的溶剂溶解度,和聚合物的亲和性。含氧基团的氧含量在30~40%,水溶性非常好,溶解后单层含量为99%以上。微片大小在0.5~3μm,厚度在0.55~1.2nm左右。无沉淀。氧化石墨烯粉末是由氧化石墨烯溶胶通过真空冷冻干燥获得。氧化石墨烯在冷冻干燥的过程中不会因升温干燥失去表面含氧基团以及引起氧化石墨烯层间重叠。干燥后的粉末疏松多孔,呈海绵状,加水后,较声波破碎仪较声5-10min(较声波清洗仪较声30min左右),能恢复到原来的溶胶性状,得到均匀稳定的分散液。氢化蓖麻油 CAS:8001-78-3