AlSi10Mg铝合金粉末在汽车和航天领域都掀起了轻量化革新。其密度为2.68g/cm3,通过电子束熔融(EBM)技术成型的散热器、卫星支架等部件可减重30%-50%。研究发现,添加0.5%纳米Zr颗粒可细化晶粒至5μm以下,明著提升抗拉强度至450MPa。全球带领企业已推出低孔隙率(<0.2%)的改性铝合金粉末,配合原位热处理工艺使零件耐温性突破200℃。但需注意铝粉的高反应性需在惰性气体环境中处理,粉末回收率控制在80%以上才能保证经济性。
3D打印金属粉末的制备是技术链的关键环节,主要依赖雾化法。气雾化(GA)和水雾化(WA)是主流技术:气雾化通过高压惰性气体(如氩气)将熔融金属液流破碎成微小液滴,快速冷却后形成高球形度粉末,氧含量低,适用于钛合金、镍基高温合金等高活性材料;水雾化则成本更低,但粉末形状不规则,需后续处理。近年等离子旋转电极雾化(PREP)技术兴起,通过离心力甩出液滴,粉末纯净度更高,但产能受限。粉末粒径通常控制在15-53μm,需通过筛分和气流分级确保均匀性,以满足不同打印设备(如SLM、EBM)的铺粉要求。嘉兴3D打印金属粉末合作金属粘结剂喷射成型技术(BJT)通过逐层粘接和后续烧结实现近净成形制造。
等离子旋转电极雾化(PREP)通过高速旋转金属电极(转速20,000 RPM)在等离子弧作用下熔化并甩出液滴,形成高纯度球形粉末。该技术尤其适用于钛、锆等高活性金属,粉末氧含量可控制在500ppm以下,卫星粉比例<0.05%。俄罗斯VSMPO-AVISMA公司采用PREP制备的Ti-6Al-4V粉末,平均粒径45μm,用于波音787机翼铰链部件,疲劳寿命较传统气雾化粉末提升30%。然而,PREP的产能限制明显(每小时5-10kg),且电极制备成本高昂(钛锭损耗率20%)。较新进展中,中国钢研科技集团开发多电极同步雾化技术,将产能提升至30kg/h,但设备投资超1500万美元,限为高级国用领域。
钴铬合金(如CoCrMo)因高耐磨性、无镍毒性,成为牙科冠桥、骨科关节的优先材料。传统铸造工艺易导致成分偏析,而3D打印钴铬合金粉末通过逐层堆积,可实现个性化适配。例如,某品牌3D打印钴铬合金牙冠,通过患者口腔扫描数据直接成型,边缘密合度<50μm,使用寿命较传统工艺延长3倍。在骨科领域,某医院采用3D打印钴铬合金膝关节假体,通过多孔结构设计促进骨长入,术后发病率从2%降至0.3%。但钴铬合金粉末硬度高(HRC 35-40),需采用高功率激光器(≥500W)才能完全熔化,设备成本较高。铝合金3D打印件经过热处理后,抗拉强度可提升30%以上,但易出现热裂纹缺陷。
声学超材料通过3D打印的钛合金螺旋-腔体复合结构,在500-2000Hz频段实现声波衰减30dB。德国宝马集团在M系列跑车排气系统中集成打印消音器,背压降低20%而噪音减少5分贝。潜艇领域,梯度阻抗金属结构可扭曲主动声呐信号,美国海军测试的样机检测距离从10km降至2km。技术难点在于多物理场耦合仿真:单个零件的声-结构-流体耦合计算需消耗10万CPU小时,需借助超算优化。中国商飞开发的客舱降噪面板采用铝硅合金多孔结构,减重40%且隔声量提升15dB,已通过适航认证。梯度金属材料的3D打印实现了单一构件不同区域力学性能的定制化分布。安徽模具钢粉末品牌
3D打印金属粉末的粒径分布和球形度直接影响打印件的致密性和机械性能。山东金属粉末
超高速激光熔覆(EHLA)以10-50m/min的扫描速度在基体表面熔覆金属粉末,热输入降低至常规熔覆的10%,实现纳米晶涂层(晶粒尺寸<100nm)。德国亚琛大学采用EHLA在柴油发动机活塞环表面熔覆WC-12Co粉末,硬度达HRC 65,耐磨性提升8倍,使用寿命延长至50万公里。关键技术包括:① 同轴送粉精度±0.1mm;② 激光-粉末流耦合控制(能量密度300J/mm2);③ 闭环温控系统(波动±5℃)。中国徐工集团应用EHLA修复矿山机械轧辊,单件修复成本降低70%,但涂层结合强度(>450MPa)需通过HIP后处理保障,工艺链复杂度增加。山东金属粉末