高分子化合物是很早被应用为光刻胶的材料。中文“光刻胶”的“胶”字起初对应于“橡胶”,而至今英文中也常将光刻胶主体材料称为“resin”(树脂),其背后的缘由可见一斑。按照反应机理,高分子光刻胶基本可以分为两类:化学放大光刻胶和非化学放大光刻胶?;Х糯蠡?span>起初由美国IBM公司于1985年提出,后来被广泛应用于KrF及更好的光刻工艺中。化学放大光刻胶的光敏剂为光致产酸剂,主体材料中具有在酸作用下可以离去的基团,如叔丁氧羰基酯、金刚烷酯等。在光照下,光致产酸剂生成一分子的酸,使一个离去基团发生分解反应,原本的酯键变成羟基(通常是酚羟基),同时又产生一分子的酸;新产生的酸可以促使另一个离去基团发生反应;如此往复,形成链式反应。光刻胶行业长年被日本和美国专业公司垄断。上海光交联型光刻胶其他助剂
光刻胶的两大主要研究小组:杨国强课题组和李嫕课题组,分别设计并制备了双酚A型和螺双芴型的单分子树脂化学放大光刻胶,前者可通过调节离去基团的数量来改变光刻胶的灵敏度,后者则通过螺双芴结构降低材料的结晶性,提高了成膜性性能。两种光刻胶都可以实现小于25nm线宽的光刻线条。随后,杨国强课题组还报道了一种可作为负性光刻胶的双酚A单分子树脂光刻胶,该分子中具有未经?;さ姆郁腔?,在光酸的作用下可以与交联剂四甲氧基甲基甘脲反应形成交联网状结构,从而无法被碱性显影液洗脱,可在电子束光刻下实现80nm以下的线条,在EUV光刻中有潜在的应用。此外,两个课题组还分别就两个系列光刻胶的产气情况开展研究。普陀湿膜光刻胶溶剂光刻胶通过光化学反应,经曝光、显影等光刻工序将所需要的微细图形从光罩(掩模版)转移到待加工基片上。
2010年,美国英特尔公司的Masson报道了一种含有Co的聚合物光刻胶,由Co2(CO)8与高分子链中的炔烃部分络合反应生成。EUV曝光后,在光酸的作用下发生高分子断链反应,溶解度发生变化,可形成30nm的光刻线条,具有较高的灵敏度,但LER较差。2014年,课题组报道了一种铋化合物,并将其用于极紫外光刻。这种由氯原子或酯键配合的铋寡聚物可在EUV光照后发生分子间交联反应。不过尽管铋的EUV吸收能力很强,但此类配合物的灵敏度并不高,氯配合铋寡聚物能实现分辨率21nm,所需剂量高达120mJ·cm?2。
尽管高分子体系一直是前代光刻胶的发展路线,但随着光刻波长进展到EUV阶段,高分子体系的缺点逐渐显露出来。高分子化合物的分子量通常较大,链段容易发生纠缠,因此想要实现高分辨率、低粗糙度的光刻线条,必须降低分子量,从而减少分子体积。随着光刻线条越来越精细,光刻胶的使用者对光刻胶的性能要求也越来越高,其中重要的一条便是光刻胶的质量稳定性。由于高分子合成很难确保分子量分布为1,不同批次合成得到的主体材料都会有不同程度的成分差异,这就使得高分子光刻胶难以低成本地满足关键尺寸均一性等批次稳定性要求??蒲斜冉铣<膇线光刻正胶,可以形成5-20um的胶厚,有优异的分辨率和加工稳定性。
除了枝状分子之外,环状单分子树脂近年来也得到了迅速发展。这些单分子树脂的环状结构降低了分子的柔性,从而通常具有较高的玻璃化转变温度和热化学稳定性。由于构象较多,此类分子也难以结晶,往往具有很好的成膜性。起初将杯芳烃应用于光刻的是东京科技大学的Ueda课题组,2002年起,他们报道了具有间苯二酚结构的杯芳烃在365nm光刻中的应用。2007年,瑞士光源的Solak等利用对氯甲氧基杯芳烃获得了线宽12.5nm、占空比1∶1的密集线条,但由于为非化学放大光刻胶,曝光机理为分子结构被破坏,灵敏度较差,为PMMA的1/5。光刻胶发展至今已有百年历史,现已用于集成电路、显示、PCB 等领域,是光刻工艺的重要材料。嘉定化学放大型光刻胶光引发剂
能量(光和热)可以活化光刻胶。上海光交联型光刻胶其他助剂
起初发展起来的单分子树脂材料是具有三苯基取代的枝状分子。三苯基取代主要具有刚性的非平面结构,不易结晶且性质稳定,具有较高的玻璃化转变温度。1996年,日本大阪大学的Shirota课题组首度发表了单分子树脂材料作为光刻胶的报道。他们制备的枝状小分子TsOTPB和ASITPA可作为非化学放大型光刻胶,利用电子束光刻形成线条。TsOTPB在曝光过程中分解,可形成150nm宽的正性线条;ASITPA在曝光过程中双键聚合,可形成70nm宽的负性线条。随后,他们又在以三苯基苯为主要的树枝状分子末端引入了叔丁氧羰基,构建了的正性化学放大光刻胶体系,灵敏度与原始的材料相比提高。t-Boc基团遇到光致产酸剂产生的酸后发生离去反应,露出酚羟基,从而可溶解于碱性显影液中。上海光交联型光刻胶其他助剂