加强光刻胶的机理研究,对新型光刻胶的设计开发、现有光刻技术的改进都是大有裨益的。另外,基础研究也需要贴合产业发展的实际和需求,如含铁、钴的光刻胶,尽管具有较好的光刻效果,但由于铁、钴等元素在硅基底中扩散速度很快,容易造成器件的污染,基本没有可能投入到产业的应用中去。光刻胶的研发和技术水平,能够影响一个国家半导体工业的健康发展。2019年,日本就曾经通过限制EUV光刻胶出口来制约韩国的芯片生产。因此,唯有加强我国自主的光刻胶研发,随着光刻技术的发展,不断开发出新材料、新配方、新工艺,才能保证我国的半导体工业的快速和健康发展。在PCB行业:主要使用的光刻胶有干膜光刻胶、湿膜光刻胶、感光阻焊油墨等。江浙沪化学放大型光刻胶印刷电路板
2005年,研究人员利用美国光源的高数值孔径微观曝光工具评价了RohmandHaas公司研发的新型ESCAP光刻胶MET-1K,并将其与先前的EUV-2D光刻胶相比较。与EUV-2D相比,MET-1K添加了更多的防酸扩散剂。使用0.3NA的EUV曝光工具,在90~50nm区间,EUV-2D和MET-1K的图形质量都比较好;但当线宽小于50nm时,EUV-2D出现明显的线条坍塌现象,而MET-1K则直到35nm线宽都能保持线条完整。在45nm线宽时,MET-1K仍能获得较好的粗糙度,LER达到6.3nm。可见MET-1K的光刻性能要优于EUV-2D。从此,MET-1K逐渐代替EUV-2D,成为新的EUV光刻设备测试用光刻胶。嘉定化学放大型光刻胶在半导体集成电路制造行业:主要使用g线光刻胶、i线光刻胶、KrF光刻胶、ArF光刻胶等。
除了枝状分子之外,环状单分子树脂近年来也得到了迅速发展。这些单分子树脂的环状结构降低了分子的柔性,从而通常具有较高的玻璃化转变温度和热化学稳定性。由于构象较多,此类分子也难以结晶,往往具有很好的成膜性。起初将杯芳烃应用于光刻的是东京科技大学的Ueda课题组,2002年起,他们报道了具有间苯二酚结构的杯芳烃在365nm光刻中的应用。2007年,瑞士光源的Solak等利用对氯甲氧基杯芳烃获得了线宽12.5nm、占空比1∶1的密集线条,但由于为非化学放大光刻胶,曝光机理为分子结构被破坏,灵敏度较差,为PMMA的1/5。
在Shirota等的工作基础之上,2005年起,美国康奈尔大学的Ober课题组将非平面树枝状连接酸敏基团的策略进一步发展,设计并合成了一系列用于EUV光刻的单分子树脂光刻胶,这些光刻胶分子不再局限于三苯基取代主要,具有更复杂的枝状拓扑结构。三级碳原子的引入使其更不易形成晶体,有助于成膜性能的提高;更复杂的拓扑结构,也便于在分子中设置数量不同的酸敏基团,有利于调节光刻胶的灵敏度。他们研究了后烘温度、显影剂浓度等过程对单分子树脂材料膨胀行为的影响,获得20nm分辨率的EUV光刻线条,另外,他们也研究了利用超临界CO2作为显影剂的可能性。光刻胶行业的上下游合作处于互相依存的关系,市场新进入者很难与现有企业竞争,签约新客户的难度高。
起初被广泛应用的化学放大型EUV光刻胶是环境稳定的化学放大型光刻胶(ESCAP),该理念由IBM公司的光刻胶研发团队于1994年提出,随后Shipley公司也开展了系列研究。ESCAP光刻胶由对羟基苯乙烯、苯乙烯、丙烯酸叔丁酯共聚而成,其酸敏基团丙烯酸叔丁酯发生反应需要的活化能较高,因此对环境相对稳定,具有保质期长、后烘温度窗口大、升华物少、抗刻蚀性好等特点,后广泛应用于248nm光刻。1999年,时任Shipley公司研发人员将其应用于EUV光刻,他们在19种ESCAP光刻胶中筛选出性能好的编号为2D的EUV光刻胶。通过美国桑迪亚实验室研制的Sandia10XIEUV曝光工具,可获得密集线条的最高分辨率达70nm,线宽为100nm时LER为5.3nm,线宽为80nm时LER为7.5nm。该光刻胶即为Shipley公司推出的工具型EUV光刻胶EUV-2D。它取代PMMA成为EUV光刻设备的测试用光刻胶,直至2005年。按显示效果分类:光刻胶可分为正性光刻胶和负性光刻胶。苏州正性光刻胶
有机-无机杂化光刻胶被认为是实现10nm以下工业化模式的理想材料。江浙沪化学放大型光刻胶印刷电路板
荷兰光刻高级研究中心的Brouwer课题组进一步优化了锡氧纳米簇的光刻工艺。他们发现后烘工艺可以大幅提高锡氧纳米簇光刻胶的灵敏度。尽管锡氧纳米簇的机理是非化学放大机理,但曝光后产生的活性物种仍然有可能在加热状态下继续进行反应。俄勒冈州立大学的Herman课题组制备了一种电中性的叔丁基锡Keggin结构(β-NaSn13)纳米簇。这一类的光刻胶在含氧气氛下的灵敏度远高于真空环境下的灵敏度,这可能与分子氧生成的反应活性氧物种有关。江浙沪化学放大型光刻胶印刷电路板