无论是高分子型光刻胶,还是单分子树脂型光刻胶,都难以解决EUV光吸收和抗刻蚀性两大难题。光刻胶对EUV吸收能力的要求曾随着EUV光刻技术的进展而发生改变,而由于EUV光的吸收只与原子有关,因而无论是要透过性更好,还是要吸收更强,只通过纯有机物的分子设计是不够的。若想降低吸收,则需引入低吸收原子;若想提高吸收,则需引入高吸收原子。此外,由于EUV光刻胶膜越来越薄,对光刻胶的抗刻蚀能力要求也越来越高,而无机原子的引入可以增强光刻胶的抗刻蚀能力。于是针对EUV光刻,研发人员设计并制备了一大批有机-无机杂化型光刻胶。这类光刻胶既保留了高分子及单分子树脂光刻胶的设计灵活性和较好的成膜性,又可以调节光刻胶的EUV吸收能力,增强抗刻蚀性。经过多年技术积累,国内已形成一定光刻胶用电子化学品产能,国内公司市场份额逐步提升,国产替代正在进行。浙江显示面板光刻胶其他助剂
KrF光刻时期,与ESCAP同期发展起来的还有具有低活化能的酸致脱保护基团的光刻胶,业界通称低活化能胶或低温胶。与ESCAP相比,低活化能胶无需高温后烘,曝光能量宽裕度较高,起初由日本的和光公司和信越公司开发,1993年,IBM公司的Lee等也研发了相同机理的光刻胶KRS系列,商品化版本由日本的JSR公司生产。其结构通常为缩醛基团部分保护的对羟基苯乙烯,反应机理如图12所示。2004年,IBM公司的Wallraff等利用电子束光刻比较了KRS光刻胶和ESCAP在50nm线宽以下的光刻性能,预示了其在EUV光刻中应用的可能性。江苏g线光刻胶光引发剂在选择光刻胶时需要考虑化学性质、照射时间、敏感度和稳定性等因素,以确保所选的光刻胶能够满足制造要求。
光刻胶研发的目的,是提高光刻的性能。对光刻胶来说,重要的三个指标是表征其关键光刻性能的分辨率、灵敏度和粗糙度。分辨率表征了光刻胶可以得到的小图案尺寸,通常使用光刻特征图形的尺寸,即“关键尺寸”(CD)来表示;灵敏度表示了光刻胶实现曝光、形成图形所需的较小能量;而粗糙度则表征了光刻图案边缘的粗糙程度,通常用线边缘粗糙度(LER)或线宽粗糙度(LWR)来表示。除此之外,光刻胶使用者也会关注图像对比度、工艺窗口、焦深、柯西参数、关键尺寸均一性、抗刻蚀能力等诸多参数。光刻胶的研发,就是要通过材料设计、配方优化和光刻工艺的调整,来提高光刻胶的诸多性能,并在一定程度上相互容忍、协调,达到光刻工艺的要求。
化学放大型光刻胶体系中有一个比较大的问题,就是光酸的扩散问题。光酸的扩散会增加光刻过程的图案的粗糙度,进而影响光刻结果的分辨率。而将光致产酸剂与光刻胶主体材料聚合在一起,则有可能解决这一问题。此外,光致产酸剂(特别是离子型光致产酸剂)的化学结构与主体材料相差较大,极易在成膜时发生聚集,导致微区分相现象;而光致产酸剂与光刻胶主体材料共价键合后,分布均匀性可以得到改善,这也有利于获得质量更好的光刻图案。按显示效果分类:光刻胶可分为正性光刻胶和负性光刻胶。
由于早期制约EUV光刻发展的技术瓶颈之一是光源功率太小,因此,在不降低其他光刻性能的前提下提高EUV光刻胶的灵敏度一直是科研人员的工作重点。为了解决这一问题,2013年,大阪大学的Tagawa等提出了光敏化化学放大光刻胶(PSCAR?)。与其他EUV化学放大光刻胶不同的是,PSCAR体系除了需在掩模下进行产生图案的EUV曝光,还要在EUV曝光之后进行UV整片曝光。PSCAR体系中除了有主体材料、光致产酸剂,还包括光敏剂前体。这是一种模型光敏剂前体的结构,它本身对UV光没有吸收,但在酸性条件下可以转化为光敏剂,对UV光有吸收。目前,中国本土光刻胶以PCB用光刻胶为主,平板显示、半导体用光刻胶供应量占比极低。昆山KrF光刻胶光引发剂
光刻胶的研发是不断进行配方调试的过程,且难以通过现有产品反向解构出其配方,这对技术有很大的要求。浙江显示面板光刻胶其他助剂
2014年,Gonsalves课题组在侧基连接硫鎓盐的高分子光刻胶基础之上,制备了一种侧基含有二茂铁基团高分子光刻胶。其反应机理与不含二茂铁的光刻胶类似,但二茂铁的引入增强了光刻胶的热稳定性和灵敏度,可实现25nm线宽的曝光。2015年,课题组报道了一系列钯和铂的配合物,用于正性EUV曝光。配合物中包括极性较大的草酸根配体,也有极性较小的1,1-双(二苯基膦)甲烷或1,2-二(二苯基膦)乙烷配体。EUV曝光后,草酸根分解形成二氧化碳或一氧化碳,配体只剩下低极性部分,从而可以用低极性的显影液洗脱;未曝光区域由于草酸根的存在,无法溶于显影液,实现正性曝光。这一系列配合物中,灵敏度较高的化合物为1,2-二(二苯基膦)乙烷配草酸钯,可以在50mJ·cm?2的剂量下得到30nm的线宽。浙江显示面板光刻胶其他助剂