工艺流程
? 目的:去除基板表面油污、颗粒,增强感光胶附着力。
? 方法:
? 化学清洗(硫酸/双氧水、去离子水);
? 表面处理(硅基板用六甲基二硅氮烷HMDS疏水化,PCB基板用粗化处理)。
涂布(Coating)
? 方式:
? 旋涂:半导体/显示领域,厚度控制精确(纳米至微米级),转速500-5000rpm;
? 喷涂/辊涂:PCB/MEMS领域,适合大面积或厚胶(微米至百微米级,如负性胶可达100μm)。
? 关键参数:胶液黏度、涂布速度、基板温度(影响厚度均匀性)。
前烘(Soft Bake)
? 目的:挥发溶剂,固化胶膜,增强附着力和稳定性。
? 条件:
? 温度:60-120℃(正性胶通常更低,如90℃;负性胶可至100℃以上);
? 时间:5-30分钟(根据胶厚调整,厚胶需更长时间)。
曝光(Exposure)
? 光源:
? 紫外光(UV):G线(436nm)、I线(365nm)用于传统光刻(分辨率≥1μm);
? 深紫外(DUV):248nm(KrF)、193nm(ArF)用于半导体先进制程(分辨率至20nm);
? 极紫外(EUV):13.5nm,用于7nm以下制程(只能正性胶适用)。
? 曝光方式:
? 接触式/接近式:掩膜版与胶膜直接接触(PCB、MEMS,低成本但精度低);
? 投影式:通过物镜聚焦(半导体,分辨率高,如ArF光刻机精度达22nm)。
光刻胶与自组装材料(DSA)结合,有望突破传统光刻的分辨率极限。烟台阻焊光刻胶品牌
广东吉田半导体材料有限公司多种光刻胶产品,各有特性与优势,适用于不同领域。
LCD 正性光刻胶 YK - 200:具有较大曝光、高分辨率、良好涂布和附着力的特点,重量 100g。适用于液晶显示领域的光刻工艺,能确保 LCD 生产过程中图形的精确转移和良好的涂布效果。
半导体正性光刻胶 YK - 300:具备耐热耐酸、耐溶剂性、绝缘阻抗和紧密性,重量 100g。主要用于半导体制造工艺,满足半导体器件对光刻胶在化学稳定性和电气性能方面的要求。
耐腐蚀负性光刻胶 JT - NF100:重量 1L,具有耐腐蚀的特性,适用于在有腐蚀风险的光刻工艺中,比如一些特殊环境下的半导体加工或电路板制造。
合肥阻焊油墨光刻胶工厂国产光刻胶突破技术瓶颈,在中高级市场逐步实现进口替代。
技术验证周期长
半导体光刻胶的客户验证周期通常为2-3年,需经历PRS(性能测试)、STR(小试)、MSTR(批量验证)等阶段。南大光电的ArF光刻胶自2021年启动验证,预计2025年才能进入稳定供货阶段。
原材料依赖仍存
树脂和光酸仍依赖进口,如KrF光刻胶树脂的单体国产化率不足10%。国内企业需在“吸附—重结晶—过滤—干燥”耦合工艺等关键技术上持续突破。
未来技术路线
? 金属氧化物基光刻胶:氧化锌、氧化锡等材料在EUV光刻中展现出更高分辨率和稳定性,清华大学团队已实现5nm线宽的原型验证。
? 电子束光刻胶:中科院微电子所开发的聚酰亚胺基电子束光刻胶,分辨率达1nm,适用于量子芯片制造。
? AI驱动材料设计:华为与中科院合作,利用机器学习优化光刻胶配方,研发周期缩短50%。
纳米压印光刻胶
微纳光学器件制造:制作衍射光学元件、微透镜阵列等微纳光学器件时,纳米压印光刻胶可实现高精度的微纳结构复制。通过纳米压印技术,将模板上的微纳图案转移到光刻胶上,再经过后续处理,可制造出具有特定光学性能的微纳光学器件,应用于光通信、光学成像等领域。
生物芯片制造:在 DNA 芯片、蛋白质芯片等生物芯片的制造中,需要在芯片表面构建高精度的微纳结构,用于生物分子的固定和检测。纳米压印光刻胶可帮助实现这些精细结构的制作,提高生物芯片的检测灵敏度和准确性。
平板显示用光刻胶需具备高透光率,以保证屏幕色彩显示的准确性。
技术优势:23年研发沉淀与细分领域突破
全流程自主化能力
吉田在光刻胶研发中实现了从树脂合成、光引发剂制备到配方优化的全流程自主化。例如,其纳米压印光刻胶通过自主开发的树脂体系,实现了3μm的分辨率,适用于MEMS传感器、光学器件等领域。
技术壁垒:公司拥有23年光刻胶研发经验,掌握光刻胶主要原材料(如树脂、光酸)的合成技术,部分原材料纯度达PPT级。
细分领域技术先进
? 纳米压印光刻胶:在纳米级图案化领域(如量子点显示、生物芯片)实现技术突破,分辨率达3μm,填补国内空缺。
? LCD光刻胶:针对显示面板行业需求,开发出高感光度、高对比度的光刻胶,适配AMOLED、Micro LED等新型显示技术。
研发投入与合作
公司2018年获高新技术性企业认证,与新材料领域同伴们合作开发半导体光刻胶,计划2025年启动半导体用KrF光刻胶研发。
无铟光刻胶(金属氧化物基)是下一代EUV光刻胶的研发方向之一。天津制版光刻胶工厂
光刻胶的灵敏度(曝光剂量)和对比度是衡量其性能的关键参数。烟台阻焊光刻胶品牌
定义与特性
正性光刻胶是一种在曝光后,曝光区域会溶解于显影液的光敏材料,形成与掩膜版(Mask)图案一致的图形。与负性光刻胶(未曝光区域溶解)相比,其优势是分辨率高、图案边缘清晰,是半导体制造(尤其是制程)的主流选择。
化学组成与工作原理
主要成分
? 树脂(成膜剂):
? 传统正性胶:采用**酚醛树脂(Novolak)与重氮萘醌(DNQ,光敏剂)**的复合体系(PAC体系),占比约80%-90%。
? 化学增幅型(用于DUV/EUV):含环化烯烃树脂或含氟聚合物,搭配光酸发生器(PAG),通过酸催化反应提高感光度和分辨率。
? 溶剂:溶解树脂和感光剂,常用丙二醇甲醚醋酸酯(PGMEA)或乳酸乙酯。
? 添加剂:表面活性剂(改善涂布均匀性)、稳定剂(防止暗反应)、碱溶解度调节剂等。
工作原理
? 曝光前:光敏剂(如DNQ)与树脂结合,形成不溶于碱性显影液的复合物。
? 曝光时:
? 传统PAC体系:DNQ在紫外光(G线436nm、I线365nm)照射下发生光分解,生成羧酸,使曝光区域树脂在碱性显影液中溶解性增强。
? 化学增幅型:PAG在DUV/EUV光下产生活性酸,催化树脂发生脱保护反应,大幅提高显影速率(灵敏度提升10倍以上)。
? 显影后:曝光区域溶解去除,未曝光区域保留,形成正性图案。
烟台阻焊光刻胶品牌