恒流二极管具有在一定电压范围内输出恒定电流的特性。其内部结构和工作机制使得通过它的电流基本不随外加电压的变化而改变。在一些对电流稳定性要求较高的电路中,恒流二极管发挥着重要作用。例如在 LED 驱动电路中,由于 LED 的发光亮度与通过的电流密切相关,使用恒流二极管可为 LED 提供稳定的驱动电流,确保 LED 发光亮度均匀、稳定,避免因电流波动导致 LED 亮度变化或寿命缩短。在一些传感器电路中,恒流二极管也用于为传感器提供稳定的工作电流,保证传感器输出信号的准确性和可靠性,在需要精确控制电流的电路中是不可或缺的器件。二极管结构简单,制造成本低,因此广泛应用于各种电子设备中。STY60NM50
在正常使用的电流范围内导通时二极管的端电压几乎维持不变这个电压称为二极管的正向导通电压。不同类型的二极管其正向导通电压也有所不同例如硅二极管一般为0.6-0.7V而锗二极管则较低约为0.3V。当二极管承受反向电压时如果反向电压不超过一定限度(即反向击穿电压)则二极管几乎不导通电流处于截止状态。这种反向截止特性是二极管能够单向导电的重要原因之一。当反向电压超过二极管的反向击穿电压时二极管会发生反向击穿现象此时二极管由截止状态转变为导通状态电流迅速增大。然而需要注意的是反向击穿可能是破坏性的因此需要合理设计电路以避免二极管发生破坏性击穿。广州BAV99,235二极管整流器在电路中,二极管常被用作整流器,将交流电转换为直流电。
PIN 二极管由 P 型半导体、本征半导体(I 层)和 N 型半导体组成,其 I 层较厚。这种特殊结构使 PIN 二极管在正向偏置时,呈现低电阻状态,类似于导通的开关;在反向偏置时,呈现高电阻状态,类似于断开的开关。在射频(RF)电路中,PIN 二极管常被用作射频开关。例如在手机的天线切换电路中,通过控制 PIN 二极管的导通和截止,实现不同频段天线的切换,使手机能够在不同通信环境下稳定接收和发送信号。在射频功率放大器的电路中,PIN 二极管也可用于功率控制和信号切换,确保射频电路在不同工作状态下的高效运行,是实现射频信号灵活处理和控制的关键器件。
二极管的反向特性曲线反映了二极管在反向偏置时的电流与电压的关系。在反向偏置的情况下,二极管中只有少数载流子形成的微弱反向电流。当反向电压较小时,反向电流几乎保持不变,这个电流称为反向饱和电流。随着反向电压的继续增加,当反向电压达到二极管的击穿电压时,二极管的反向电流会急剧增加。如果不加以限制,过大的反向电流会导致二极管损坏。不过,在稳压二极管中,正是利用了这种反向击穿特性来实现稳压功能。通过对反向特性曲线的分析,可以了解二极管的反向耐压能力和击穿特性。在数字电路中,二极管常被用作逻辑门的基本组件,实现信号的逻辑运算。
肖特基二极管是基于金属 - 半导体接触形成的二极管。它具有几个明显的特点。首先,肖特基二极管的正向导通电压较低,通常比普通硅二极管的导通电压低 0.2 - 0.3V 左右。这使得它在低电压、大电流的场合具有优势,可以降低电路的功耗。其次,肖特基二极管的开关速度非常快,这是因为它没有普通二极管中的少数载流子存储效应。在高频电路中,如射频电路和高速数字电路中,肖特基二极管能够快速地导通和截止,减少信号的失真和损耗。此外,肖特基二极管的反向恢复时间极短,这使得它在开关电源等需要频繁开关的电路中表现出色。不过,肖特基二极管的反向耐压能力相对较低,这在一定程度上限制了它的应用范围。二极管的工作原理基于PN结的半导体特性,涉及复杂的物理过程。BZB84-C56
二极管具有单向导电性,它只允许电流从正极流向负极。STY60NM50
稳压二极管(齐纳二极管)利用反向击穿特性实现稳压功能。当反向电压达到其击穿电压时,即使电流在较大范围内变化,二极管两端的电压仍能保持基本稳定。稳压电路中,稳压二极管与限流电阻串联接入电源,通过调整限流电阻的阻值,控制流过稳压二极管的电流,使其工作在反向击穿区。这种电路常用于为电子设备提供稳定的参考电压,如在单片机系统中为芯片供电,确保电源电压不受输入电压波动或负载变化的影响。与普通二极管不同,稳压二极管正常工作在反向击穿状态,且具有良好的可逆性,只要电流和功耗控制在允许范围内,不会因击穿而损坏,是稳定电压的重要器件。STY60NM50