远心镜头的景深(DOF)是物体可清晰成像的轴向范围,对厚物体或多层结构检测尤为重要。以锂电池极片堆叠检测为例,极片厚度在 0.1mm 至 1mm 之间,若镜头景深不足,堆叠后的多层极片会因轴向位置差异导致部分区域模糊,影响缺陷识别。而远心镜头凭借远大于普通镜头的景深,可确保同一视场内不同高度的物体均清晰成像,提升检测效率。在电机定子绕组检测中,绕组线圈高度差可达数毫米,普通镜头需多次调焦才能看清不同高度的线圈,远心镜头则可一次性清晰成像,避免因调焦延迟影响产线速度,这在高速生产线中具有***优势。物方远心镜头像面 Z 向移动时位置和大小均改变,放大倍率对物体敏感。福建像方远心镜头加工
双远心镜头的高精度特性使其成为 3D 测量、厚度测量等**应用领域的推荐方案,其物方和像方主光线均平行于光轴的设计,确保了成像的高度稳定性和测量的高精度,能够实现亚微米级的测量精度。在半导体制造领域,双远心镜头可用于晶圆的 3D 轮廓测量和厚度检测,确保芯片制造质量;在精密机械加工中,可用于零件的高精度尺寸测量和表面缺陷检测,保障零件的加工精度;在科研领域,可用于微观结构的观察和测量,为科学研究提供可靠数据。尽管双远心镜头存在成本高、体积大、视场小等缺点,但在这些对精度要求极高的场景中,其优势无可替代,是**检测设备的**组件。福建高清晰度远心镜头厂家远心镜头的主光线与光轴平行或夹角极小,能减少成像畸变。
高解析度和低畸变是远心镜头在视觉检测中的重要优势,通过精密的光学设计和制造工艺,远心镜头能够实现高解析度成像,捕捉物体的细微细节,同时将畸变控制在极低水平,确保成像的真实性和准确性。在 FPD 面板检测中,高解析度可识别微米级的线路缺陷,低畸变则保证了线路尺寸测量的精度;在电子元器件检测中,这种特性可准确识别 01005 超微型元件的焊膏印刷质量和贴装位置。高解析度和低畸变的结合,使远心镜头能够为视觉检测系统提供高质量的图像数据,减少误检和漏检率,提升产品质量控制水平。
物方远心镜头的大景深特性使其在检测厚物体或表面起伏工件时表现优异。例如检测 5mm 厚的工件,普通镜头需选择工作距离更短、景深更大的镜头,而远心镜头在 50mm 工作距离下景深可达 2mm,满足全厚度清晰成像需求。在 3C 产品外壳缺陷检测中,按键、卡槽等凹凸结构可通过大景深镜头一站式检测,减少多镜头切换成本。传统检测中,对多层电路板、带凸台机械零件等多焦面物体,需机械调焦或多镜头组合,增加设备成本与检测时间,而远心镜头大景深可一次性覆盖多个焦面,如检测高度差 3mm 的多层 FPC 时,普通镜头需 3 次调焦耗时 1.5 秒,远心镜头 0.3 秒内完成单次成像,配合高帧率相机实现每秒 30 次检测速度,大幅提升产线效率。远心镜头特点是主光线平行于光轴,能消除普通镜头的畸变。
双远心镜头的高精度特性使其成为 3D 测量等领域的推荐方案,其物方和像方主光线均平行于光轴的设计,确保了物体和像面在轴向移动时成像的位置和大小均不变,放大倍率高度稳定,能够实现亚微米级的测量精度。在 3D 轮廓测量、厚度检测、高精度尺寸测量等场景中,双远心镜头能够提供可靠的三维数据,为产品质量控制提供精细依据。例如在锂电池极片厚度检测中,双远心镜头可准确测量极片的三维形态,确保厚度均匀性符合要求;在半导体晶圆的 3D 检测中,其高精度特性能够识别微小的表面缺陷,保障芯片制造质量。选择远心镜头时需考虑工作距离,以适应不同的安装空间设计。湖北双远心镜头工厂
定制远心镜头放大倍率为固定值,如 0.3X、1X、2X,需匹配传感器尺寸和视野。福建像方远心镜头加工
工作距离(WD)指远心镜头前端到被测物体的距离,这一参数直接影响设备的安装空间设计。在自动化产线中,若待测物体需配合机械臂移动,短工作距离的镜头可能因空间限制导致安装困难;长工作距离的镜头虽能预留更多操作空间,但需同步考虑光线衰减问题。例如在半导体封装检测中,通常需要 100mm 以上的工作距离,以避免镜头与精密设备干涉。此外,工作距离的选择还需结合景深综合考量,因为工作距离越长,景深往往越小,需根据被测物体的厚度调整工作距离,确保在合适的安装空间内实现清晰成像。福建像方远心镜头加工