借助Nanoscribe的3D微纳加工技术,您可以实现亚细胞结构的三维成像,适用于细胞研究和芯片实验室应用(lab-on-a-chip)。我们的客户成功使用Nanoscribe双光子无掩模光刻系统制作了3D细胞支架来研究细胞生长、迁移和干细胞分化。此外,3D微纳加工技术还可以应用在微创手术的生物医学仪器,包括植入物,微针和微孔膜等制作。Nanoscribe的无掩模光刻系统在三维微纳制造领域是一个不折不扣的多面手,由于其出色的通用性、与材料的普适性和便于操作的软件工具,在科学和工业项目中备受青睐。这种可快速打印的微结构在科研、手板定制、模具制造和小批量生产中具有广阔的应用前景。也就是说Nanoscribe在中国的子公司纳糯三维科技(上海)有限公司邀您一起探讨增材制造技术与产业的发展及前景分析。上海进口增材制造3D微纳加工
如今,金属增材制造正在急剧地改变产品制造的方式。传统的制造是将完整的金属材料用数控机床来进行减材加工,后续得到实体零件,其过程去除了大量的材料;而金属增材制造是使用三维数字模型直接打印产品的一种生产方式,将金属粉末材料,按照烧结、熔融、喷射等方式逐层堆积,制造出实体物品。增材制造与传统制造有着巨大的不同,简化后的生产方式突破传统结构设计的限制,将生产复杂结构与优化产品性能成为可能。这提升了厂家的生产弹性、缩短生产周期,并将真正的创新思维带入产品之中。有了增材制造技术,过去只存在于想象中、被视为不可能生产的各种产品,终于能够被实现。北京微纳机器人增材制造3D微纳加工增材制造需求,欢迎咨询纳糯三维科技(上海)有限公司.
谈到增材制造技术(俗称3D打印技术)估计很多人并不陌生,但是说到增材制造技术的应用,可能大部分人还只停在以下两个阶段:1)原型制造,即通过树脂、塑料等非金属材料打印的概念原型与功能原型。其中概念原型用于展示产品设计的整体概念、立体形态和布局安排,功能原型则用于优化产品的设计,促进新产品的开发,如检查产品的结构设计,模拟装配、装配干涉检验等。2)间接制造,即通过3D打印技术完成工、模具制造,再采用3D打印工模具进行零件的制造。
Nanoscribe成立于2007年,作为卡尔斯鲁厄理工学院研究小组的分拆,目前,Nanoscribe已经成为纳米和微米3D打印的出名企业,并且在许多项目上都有所作为。Nanoscribe的激光光刻系统用于3D打印世界上特别小的强度高的3D晶格结构,它使用高精度激光来固化光刻胶中具有小至千分之一毫米特征的结构。换句话说,激光使基于液体的材料的小液滴内部的特定层硬化。为了进一步适应日益增长的业务,Nanoscribe还宣布将把设施搬迁到KIT投资3000万欧元的蔡司创新中心。此举将于2019年底举行,将有助于推动微型3D打印领域的更多创新。Hermatschweiler补充说:“通过这个创新中心能够与KIT靠的更近,卡尔斯鲁厄不断为Nanoscribe等公司提供创新和成功发展的理想环境。”ORNL的科学家们使用Nanoscribe的增材制造系统来构建世界上特别小的指尖陀螺,该迷你玩具的宽度只为100微米(与人类头发的宽度相当)。除了用于无线技术,Nanoscribe的3D打印技术还可用于制造高精度的光学微透镜,衍射光学元件,用于生物打印的纳米级支架等等。增材制造(AdditiveManufacturing,AM)俗称3D打印,融合了计算机辅助设计、材料加工与成型技术、以数字模型文件为基础。增材制造技术正在推动制造业的数字化转型和创新。
增材制造(AdditiveManufacturing,AM)俗称3D打印,融合了计算机辅助设计、材料加工与成型技术、以数字模型文件为基础,通过软件与数控系统将专门使用的金属材料、非金属材料以及医用生物材料,按照挤压、烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品的制造技术。相对于传统的、对原材料去除-切削、组装的加工模式不同,是一种“自下而上”通过材料累加的制造方法,从无到有。这使得过去受到传统制造方式的约束,而无法实现的复杂结构件制造变为可能。近二十年来,AM技术取得了快速的发展,“快速原型制造(RapidPrototyping)”、“三维打印(3DPrinting)”、“实体自由制造(SolidFree-formFabrication)”之类各异的叫法分别从不同侧面表达了这一技术的特点。纳糯三维科技(上海)有限公司邀您一起探讨增材制造技术发展趋势和应用。江苏工业级增材制造微纳加工系统
增材制造究竟是什么技术?想要了解请咨询Nanoscribe在中国的子公司纳糯三维科技(上海)有限公司。上海进口增材制造3D微纳加工
传统上,调节板和冷却台是铜焊的。将多个零件钎焊在一起以创建单个组件。增材制造在此提供的优势在于,可以设计结构一体化的零件,从而减少零件的数量,并替代钎焊。单一的结构对设计迭代也带来了直观的好处,我们可以想象,要通过传统的供应链,订购多个零件可能需要一两个月才能得到,因为必须通过订购系统,有人必须加工,有人必须组装,有人可能需要测试进行质量检查。然后才进入到供货物流系统中,而将这些不同的零件组装在一起后,才可以对其进行后续的一个测试。这使得每一次设计迭代都变得缓慢而昂贵。但是,通过3D打印-增材制造技术,就可以省去所有这些步骤。上海进口增材制造3D微纳加工