原发性肝cancer(Primary Liver Cancer, PLC)是全球cancer相关死亡的第三大原因,包括肝细胞cancer(Hepatocellular Carcinoma, HCC)、肝内胆管cancer(Intrahepatic Cholangiocarcinoma, ICC)及混合型肝细胞-胆管cancer(Combined Hepatocellular-Cholangiocarcinoma, CHC)。内异质性(Intra-tumor Heterogeneity, ITH)被认为是cancer医疗的主要障碍。先前的研究已经揭示了HCC、ICC和CHC中存在相当程度的基因组异质性,反映了具有不同分子特征的多样化细胞群,决定了药物敏感性并可能导致医疗失败?;颊呃丛吹睦鄌rgan(Patient-derived Organoids, PDO)培养已被证明是一种强大的工具,可以用于再现异质性并研究不同cancer类型中的药物敏感性,包括PLC疾病建模和药物筛选。然而,以前的PLC类organ研究受到样本数量的限制,且缺乏多区域样本。因此,建立一个大规模的PLC类organ生物库,对PLC异质性的深入理解和开发新的医疗策略,尤其对个性化医疗和精细医疗至关重要。药物高通量筛选、化合物活性筛选。药物实验cop
基于斑马鱼模型实验,可进行活性化合物发现、高通量药物筛选、药效评价、安全性评价、生物学质量控制等临床前研究,实验周期短、成本低,结果直观,助力医药企业的药物研发、品控及宣传推广。利用斑马鱼模型评价抗肿瘤作用【评价原理】近三十年来,世界**发病率以年均3-5%的速度递增,*类已成为人类**死因。1.**生长、转移将荧光标记的人肿瘤细胞(呈红色)移植到野生型斑马鱼体内,肿瘤细胞在斑马鱼体内的生长和转移情况可以被观察到。2.肿瘤部位新生血管将荧光标记的人肿瘤细胞(呈红色)移植到转基因血管荧光斑马鱼(呈绿色)体内,肿瘤细胞刺激斑马鱼新生血管情况可以被观察到。3.肿瘤细胞凋亡将人肿瘤细胞移植到野生型斑马鱼体内,通过特异性荧光染色(凋亡细胞呈绿色),细胞凋亡情况可以被观察到。4.肿瘤部位炎症将人肿瘤细胞移植到转基因中性粒细胞荧光斑马鱼(呈绿色)体内,肿瘤部位炎症反应可以被观察到。5.**病理将人肿瘤细胞移植到野生型斑马鱼体内,制作成病理切片,观察肿瘤细胞的形态变化。6.生存期将人肿瘤细胞移植到野生型斑马鱼体内,统计斑马鱼每日存活率、计算其生存期。新药有效性及安全性评价利用斑马鱼模型评价抗PM2.5功效。
斑马鱼消化道的解剖结构和细胞结构与人类消化道相似,具有同心圆层的内上皮、结缔组织、环状肌肉和外纵肌层。三硝基苯磺酸(TNBS)的乙醇溶液造模法属于正常免疫系统下的半抗原诱导性模型,当TNBS的乙醇溶液灌肠时,乙醇作为有机溶剂溶解肠粘膜表面的黏液,暂时性破坏肠粘膜屏障,使TNBS和肠组织蛋白结合形成完全抗原,导致肠黏膜免疫系统针对该抗原的迟发性变化反应,并造成肠黏膜的损伤。杯状细胞是黏蛋白的主要来源,其数量和形态反应肠粘膜的健康状况,是肠粘膜异常的敏感指标。由于斑马鱼通体透明的特点,有两种方法检测结肠炎的防治作用。1.观察肠腔面积的变化,2.通过特异性染料(呈蓝色)对肠道的杯状细胞染色,通过观察杯状细胞数量来判断肠粘膜的损伤情况。
斑马鱼试验表明,AG的抗心力衰竭作用因产区而异?;赨HPLC-QE-Orbitrap-MS的草药代谢组学分析结果表明,人参皂甙Rg3、人参皂甙Rg5、人参皂甙Rg6、苹果酸、奎尼酸、L-精氨基琥珀酸、3-甲基-3-丁烯基-芹糖(1→6)葡萄糖苷、拟人参皂苷F11和番荔枝碱是差异成分,可能是导致疗效变化的原因。利用斑马鱼模型、网络药理学和Q-PCR技术进一步分析表明,人参皂甙Rg3、人参皂甙Rg5、人参皂甙Rg6、苹果酸、奎尼酸和拟人参皂甙F11是抗心力衰竭的药效学标志物(P标志物)。通过斑马鱼模型和代谢组学技术,研究人员快速鉴定了AG中抗心力衰竭的P标志物,这些P标志物可能为AG的质量控制和新药开发提供新的参考标准。斑马鱼模型评价听毒性。
作为国内斑马鱼生物科技的佼佼者,环特生物自2010年成立之初就以首席科学家李春启博士为首组建研发团队,赋予“水中小白鼠”斑马鱼强大的技术先进性和前瞻性,通过活性成分筛选、功效及安全性评价,面向全球保健食品、化妆品、药品和食品企业提供先进的产品和质控解决方案,为人们渴望的美好生活带来更多功效可能及安全保障。目前,环特生物已拥有1500平方米按照GLP标准建造的实验室,配备了国际先进的斑马鱼养殖设施和分析测试设备;评价血糖、血脂高血管壁增厚改善功效。药品的有效性评价
斑马鱼实验模型-药物、化妆品功效评价。药物实验cop
深入的药品机理研究是实现药物从实验室到临床应用的关键桥梁,对临床转化具有深远意义。清晰明确的药物作用机理能够指导临床医生合理用药,根据患者的个体差异制定个性化医疗方案,提高药物医疗的有效性和安全性。例如,通过研究抗tumor药物的作用机理,发现某些基因突变与药物敏感性相关,临床医生可据此对患者进行基因检测,选择更合适的药物和剂量,避免无效医疗和不良反应。同时,药品机理研究也有助于发现药物新的适应症,拓展药物的临床应用范围。展望未来,随着生物技术、信息技术的不断进步,药品机理研究将更加注重多学科交叉融合,结合人工智能、大数据分析等技术,更高效地解析药物复杂的作用机制。此外,基于器官芯片、类organ等新技术构建的更接近人体生理环境的研究模型,也将为药品机理研究提供更准确的工具,加速药物研发和临床转化进程,为人类健康带来更多福祉。药物实验cop