天线(antenna)是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡,是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。天线可以是定向的,也可以是全向的,具体取决于其设计和用途。时钟天线安装
双孔磁心阻抗变换器的突出优点是体积小频带宽,缺点是抗干扰能力与选择性差。天线与馈线匹配中的平衡与不平衡变换很多天线如半波振子天线、折合振子天线、环行天线等都是平衡馈电的,它们都有两个馈电点,它们都有个特点:两个馈电点的信号电压(或电流)的相位是互为反相的·而主馈电缆常常都是用同轴电缆·同轴电缆属于不平衡(不对称)馈线,其内导体是馈电点,而外导体是地线点·不参与馈电·所以就算天线的特性租抗与同轴电缆相同也不能直接连接,否则会破坏天线的对称性,使天线两臂上的电流大小不等,这种不平衡性会改变天线的方向图使之成为不对称的方向图·从而使馈线可能接收到各种干扰波和使馈线与天线失配·因此在天线与同轴线连接时,不仅要考虑阻抗匹配而且还要进行平衡--不平衡变换1、A/4平衡变换器(入是信号频率的波长)N平衡变换如图6所示·半波振子的输入阻抗是75欧的平衡负载·用75欧的同轴电缆与之配接虽然阻抗是匹配了,但平衡却不匹配,必须加入一个平衡变换器半波振子的一臂与主馈线外导体相连(图6中的A点)·另一臂与入4导体上端和同轴电缆的内导体相连接(图6中的B点)·入/4导体的下端则通过短接金属环与主馈线的外导体相接。 北京设计天线导航天线可以用于无线电通信、电视、无线网络等领域。
空间分集是利用场强随空间的随机变化实现的。在移动通信中,空间略有变动就可能出现较大的场强变动。空间的间距越大,多径传播的差异就越大,所收场强的相关性就越小,在这种情况下,由于深衰落难得同时发生,分集便能把衰落效应降到**小。为此必须确定必要的空间间隔。通常根据参数设计分集天线,与实际天线高度h和天线间距D的关系为:对于水平间隔放置的天线,的取值一般为10。例如天线高度为30米,则当天线间隔约3米时,可得到较好的分集增益。另外,垂直天线间隔大于水平天线间隔。目前工程中常见的空间分集天线由两副(收/发,收)或者三副(收,发,收)组成。
无线天线可分为全向天线、定向天线、扇形天线、平板天线等类型。其中全向天线适在各无线接点距离较近、需要覆盖较多数量无线设备及客户端的场合,但这些设备的增益大多较小,信号传递距离较短。定向天线包括八木定向天线、角型定向天线、抛物面定向天线等品种,适在各无线接点位置距离很远,并且无线接入点集中、数量较少且位置固定的环境。这种天线具有信号传递距离长、能量汇聚能力强的特点。扇形天线可以多角度的覆盖,如果无线接入点集中在该天线的覆盖范围内,可考虑选购此类天线,它具有能量定向和汇聚功能。平板天线的角度范围可分为30度和15度,比扇形天线的信号覆盖范围小,但它的能量汇聚能力更强,可用在无线接入点相对较远、更为集中的环境。 天线的天线选择还需要考虑天线的适应性和兼容性等因素。
智能天线分为两大类:多波束智能天线与自适应阵智能天线,简称多波束天线和自适应阵天线。多波束天线利用多个并行波束覆盖整个用户区,每个波束的指向是固定的,波束宽度也随阵元数目的确定而确定。随着用户在小区中的移动,基站选择不同的相应波束,使接受信号**强。因为用户信号并不一定在固定波束的中心处,当用户位于波束边缘,干扰信号位于波束**时,接收效果**差,所以多波束天线不能实现信号比较好接收,一般只用作接收天线。但是与自适应阵天线相比,多波束天线具有结构简单、无需判定用户信号到达方向的优点。天线可以是定向的,也可以是全向的,根据需要选择不同类型的天线。华南叠层天线价格
天线的天线选择还需要考虑天线的耐候性和耐久性等因素。时钟天线安装
虽然在国家现阶段的发展过程中,无线电通信技术已经被广泛的应用到了各行业的生产与建设中,并给人们日常的生活与工作带来了诸多的便利条件。但是一些安装团队在对无线电通信系统中的天线进行安装的时候,会由于一些原因使天线的安装质量达不到实际使用的要求,从而降低了天线对无线电通信系统的作用。为了让天线发挥出真正的价值,为无线电通信系统的良好运作提供保障,不仅需要相关安装团队能够提升天线安装的质量和效率,还要对天线进行妥善的保护处理。这样天线的使用寿命才能延长,为社会无线通信事业的发展贡献力量。时钟天线安装