参数指标表格复制参数/型号ProSp-RTM-UVProSp-RTM-VIS光谱范围250-2500 nm250-2500 nm光源选配,SMA905 光纤接口内置钨灯光源(360-2500 nm),可外接其他光源光斑大小可调,**小 1.5 mm可调,**小 1.5 mm入射光发散角<1.5°<1.5°入射角范围0-270°0-350°接收角范围0-360°0-360°角度分辨率0.1°0.1°样品台三维调节三维调节滤波片架包含 2 个滤波片架,可放置直径 12.7 mm 的滤波片、波片和偏振片包含 2 个滤波片架,可放置直径 12.7 mm 的滤波片、波片和偏振片旋转偏振片架选配选配ProSp 角分辨测试系统凭借其高角度分辨率、全光谱测量能力和多种测量模式,成为材料科学和光学研究中的理想选择。其在微纳光学、材料学和生物技术等领域的广泛应用,展示了其强大的性能和灵活性。专谱LIBS系统凭借其快速、非接触、无需样品制备的特点,在材料分析和工业应用中展现出巨大的潜力应用前景。宁夏表面等离子体耦合共振器件专谱光电供应商
专谱钨灯光源在科研实验中的应用专谱钨灯光源是一款高性能的光纤耦合输出卤钨灯,具有***的科研实验应用。以下是其主要特点和适用的科研实验领域:产品特点波长范围广:专谱钨灯光源的波长范围覆盖 360-2500 nm,适用于从紫外到近红外的多种光谱分析需求。高亮度与低功耗:优化的光学设计实现了低功耗高亮度输出,确保在高效能转换的同时保持低能耗。长寿命:灯泡寿命长达 10000 小时,减少了更换频率和维护成本。模块化设计:采用模块化设计,便于集成到各种实验系统中,且灯泡可更换。稳定的光谱输出:优化的稳压电路设计确保了稳定的光谱输出,适用于需要高精度光谱测量的场景。浙江钨灯光源专谱光电网站微流控领域:观察和精确定位样品区域,进行荧光、拉曼和反射光谱的测量。
专谱LIBS(激光诱导击穿光谱)系统是一种先进的光谱分析技术,广泛应用于材料成分分析和元素检测。以下是关于专谱LIBS系统的详细介绍,包括其技术原理、应用领域和系统特点:技术原理LIBS技术通过高能量激光脉冲聚焦于样品表面,使样品表面的少量材料被烧蚀并激发成等离子体。等离子体中的原子和离子在冷却过程中会发射特征光谱,通过光谱仪和检测器对这些光谱进行分析,可以确定样品的元素组成。LIBS技术具有以下特点:无需样品制备:几乎无需对样品进行预处理,适用于固体、液体、气体等多种形态的样品。快速分析:检测速度快,可实现原位检测。多元素分析:能够同时检测多种元素,包括轻元素(如锂、硼)和重元素。高空间分辨率:能够对固体异质材料进行高空间分辨率采样和分析。
111应用领域科研领域:高校和研究所是主要客户,用于材料科学、生物医学、化学分析等研究。工业检测:用于材料成分分析、产品质量控制等。农业领域:测量植物叶片的光谱信息,研究病虫害情况。生物医学:用于生物分子检测、细胞分析等。光子晶体和纳米材料:用于材料性能评估和光谱特性分析。杭州专谱光电技术有限公司的产品以其高性能和多功能性,广泛应用于科研、工业、农业和生物医学等多个领域,为用户提供***的光谱解决方案。成像软件可以实时观察物体图像,捕获保存图像或录像,更改相机曝光增益参数,具有更高的分辨率。
ProSp 角分辨测试系统(ProSp-RTM-UV/VIS)是一款高性能的全角度光谱测量系统,广泛应用于材料科学、微纳光学、生物技术和矿物分析等领域。以下是其主要功能和应用:功能描述全角度测量:接收端角度范围:0-360°发射端角度范围:0-270°高角度分辨率:角度分辨率可达 0.01°全光谱测量:光谱范围:250-2500 nm多种测量模式:上反射、下反射、透射、散射、辐射等多种测量模式自动测量模式:通过软件设置测量模式、接收角范围、入射角范围、角度分辨率、循环次数、积分时间等参数,实现不同模式的自动测量手动测量模式:可以任意控制样品台的入射角和接收角进行光谱测量膜厚光谱测量系统:用于测量薄膜的厚度和折射率。新疆HL2000专谱光电设备
显微镜:用于观察样品并提供显微成像。 二维扫描台:用于实现Mapping光谱测量功能。宁夏表面等离子体耦合共振器件专谱光电供应商
在荧光光谱测量中,选择合适的激发波长是获取高质量荧光光谱的关键步骤。激发波长的选择需要综合考虑荧光分子的吸收特性、样品的背景荧光、仪器的性能以及实验的具体需求。以下是选择激发波长的具体方法和注意事项:一、荧光分子的吸收特性吸收光谱:获取吸收光谱:首先,需要获取荧光分子的吸收光谱。吸收光谱显示了分子在不同波长下的吸收强度。选择比较大吸收波长:通常选择荧光分子的比较大吸收波长(λ_max)作为激发波长,因为此时荧光分子的吸收效率比较高,荧光强度也**强。例如,荧光素的比较大吸收波长约为494nm,因此可以选择494nm作为激发波长。参考文献:如果无法直接测量吸收光谱,可以参考文献中已有的数据。二、样品的背景荧光避免背景干扰:背景荧光:某些样品(如生物组织)本身可能具有背景荧光,这会干扰目标荧光分子的信号。选择激发波长时,应尽量避免激发样品的背景荧光。选择较短波长:较短波长的激发光(如紫外光)通常可以减少背景荧光的干扰,因为生物组织对紫外光的吸收较强,背景荧光较弱。选择较长波长:对于某些特定的荧光分子,较长波长的激发光(如红光)也可以减少背景荧光的干扰,因为生物组织对红光的吸收较弱。宁夏表面等离子体耦合共振器件专谱光电供应商