电激励的锁相热成像系统在电子产业的电子浆料检测中有用武之地,为电子浆料的质量控制提供了重要手段,确保印刷线路的性能。电子浆料是用于印刷电子线路、电极等的关键材料,其导电性、均匀性和附着力直接影响印刷线路的性能和可靠性。电子浆料若存在颗粒团聚、成分不均、气泡等缺陷,会导致印刷线路的电阻增大、导电性能下降,甚至出现线路断路。通过对印刷有电子浆料的基板施加电激励,电流会沿着浆料线路流动,缺陷处由于电阻异常,会产生局部温度升高。锁相热成像系统能够检测到这些温度差异,并通过分析温度场的分布,评估电子浆料的质量。例如,在检测太阳能电池板的银浆电极时,系统可以发现因银浆成分不均导致的电阻异常区域,这些区域会影响电池板的发电效率。检测结果为电子浆料生产企业提供了质量反馈,帮助企业优化浆料配方和生产工艺,提升电子产业相关产品的生产质量。利用锁相放大器或相关算法,将热像序列中每个像素的温度信号与激励参考信号进行相关运算得到振幅与相位。实时成像锁相红外热成像系统市场价
OBIRCH与EMMI技术在集成电路失效分析领域中扮演着互补的角色,其主要差异体现在检测原理及应用领域。具体而言,EMMI技术通过光子检测手段来精确定位漏电或发光故障点,而OBIRCH技术则依赖于激光诱导电阻变化来识别短路或阻值异常区域。这两种技术通常被整合于同一检测系统(即PEM系统)中,其中EMMI技术在探测光子发射类缺陷,如漏电流方面表现出色,而OBIRCH技术则对金属层遮蔽下的短路现象具有更高的敏感度。例如,EMMI技术能够有效检测未开封芯片中的失效点,而OBIRCH技术则能有效解决低阻抗(<10 ohm)短路问题。直销锁相红外热成像系统品牌排行高灵敏度锁相热成像技术能够检测到极微小的热信号,可检测低至uA级漏电流或微短路缺陷。
锁相频率越高,得到的空间分辨率则越高。然而,对于锁相红外热成像系统来说,较高的频率往往会降低待检测的热发射。这是许多 LIT系统的限制。RTTLIT系统通过提供一个独特的系统架构克服了这一限制,在该架构中,可以在"无限"的时间内累积更高频率的 LIT 数据。数据采集持续延长,数据分辨率提高。系统采集数据的时间越长,灵敏度越高。当试图以极低的功率级采集数据或必须从弱故障模式中采集数据时,锁相红外热成像RTTLIT系统的这一特点尤其有价值。
致晟光电推出的多功能显微系统,创新实现热红外与微光显微镜的集成设计,搭配灵活可选的制冷/非制冷模式,可根据您的实际需求定制专属配置方案。这套设备的优势在于一体化集成能力:只需一套系统,即可同时搭载可见光显微镜、热红外显微镜及InGaAs微光显微镜三大功能模块。这种设计省去了多设备切换的繁琐,更通过硬件协同优化提升了整体性能,让您在同一平台上轻松完成多波段观测任务。相比单独购置多套设备,该集成系统能大幅降低采购与维护成本,在保证检测精度的同时,为实验室节省空间与预算,真正实现性能与性价比的双重提升。检测速度快,但锁相热红外电激励成像所得的位相图不受物体表面情况影响,对深层缺陷检测效果更好。
从技术原理来看,该设备构建了一套完整的 “热信号捕捉 - 解析 - 成像” 体系。其搭载的高性能探测器(如 RTTLIT P20 采用的 100Hz 高频深制冷型红外探测器)能敏锐捕捉中波红外波段的热辐射,配合 InGaAs 微光显微镜模块,可同时实现热信号与光子发射的同步观测。在检测过程中,设备先通过热红外显微镜快速锁定可疑区域,再启动 RTTLIT 系统的锁相功能:施加周期性电信号激励后,缺陷会产生与激励频率同步的微弱热响应,锁相模块过滤掉环境噪声,将原本被掩盖的热信号放大并成像。这种 “先定位、再聚焦” 的模式,既保证了检测效率,又突破了传统设备对微弱信号的检测极限。锁相热成像系统让电激励检测效率大幅提升。Thermal EMMI锁相红外热成像系统工作原理
锁相热成像系统让电激励下的缺陷无所遁形。实时成像锁相红外热成像系统市场价
锁相热成像系统凭借电激励在电子产业的芯片封装检测中表现出的性能,成为芯片制造过程中不可或缺的质量控制手段。芯片封装是保护芯片、实现电气连接的关键环节,在封装过程中,可能会出现焊球空洞、引线键合不良、封装体开裂等多种缺陷。这些缺陷会严重影响芯片的散热性能和电气连接可靠性,导致芯片在工作过程中因过热而失效。通过对芯片施加特定的电激励,使芯片内部产生热量,缺陷处由于热传导受阻,会形成局部高温区域。锁相热成像系统能够实时捕捉芯片表面的温度场分布,并通过分析温度场的相位和振幅变化,生成清晰的缺陷图像,精确显示出缺陷的位置、大小和形态。例如,在检测 BGA 封装芯片时,系统能准确识别出焊球中的空洞,即使空洞体积占焊球体积的 5%,也能被定位。这一技术的应用,帮助芯片制造企业及时发现封装过程中的问题,有效降低了产品的不良率,提升了芯片产品的质量。实时成像锁相红外热成像系统市场价