高压均质机的应用及优势,高压均质机在生物制药中有着普遍的应用,较常见的应用的各种细胞的破碎,以释放存在于细胞内的产物。如使用大肠杆菌表达重组蛋白时,产物常以包涵体形式存在于细胞内,如胰岛素,需要使用高压均质机裂解细胞,以释放包涵体,以进行后续的纯化工作。在基于病毒的疫苗生产工艺中,由于很多病毒颗粒不能在培养过程中有效地释放到细胞外的培养基中,也需要使用高压均质机进行细胞裂解,以释放病毒颗粒。在使用大肠杆菌或酵母进行基于病毒样颗粒技术的疫苗生产中,也需要使用高压均质机进行菌体裂解,以释放生产的病毒样颗粒。高压均质机可以很好地降低颗粒大小,提高产品质量。深圳工业高压均质机
微射流高压均质机概述,微射流高压均质机是一种利用微型射流处理介质的高压均质设备,主要用于样品的裂解、分散、均质等处理过程。它采用高速液体为动能,将样品高速冲击到研磨室内的玻璃珠或微射流上,使得样品得到快速的分散、均质等处理。其优点是能够使得样品得到均匀的处理效果,同时也不会热解样品分子,保证了样品质量。处理介质,微射流高压均质机所处理的介质也是可以被控制的。不同的处理介质会影响样品的处理效果。一般来说,处理介质应该与样品的特性相适应,以产生较佳的处理效果。饮料高压均质机应用高压均质机通常具有自动清洗系统,以方便清洗和维护。
从增压动力来源上:电动型,电动型以电机作为动力,向下又细分为机械型和液压型。机械型:电机带动曲轴使柱塞往复运动,直接对物料进行增压。通过多组柱塞提供连续的压力,均质压力较高,产量大,但物料较小量较大,同时电机带动曲轴需要有多级减速机构,使设备效能一般且体积较大。适合用于大型生产。液压型:电机带动油泵,通过液压系统对物料进行增压。液压系统可提供更高的压力,设备效能较高,体积相对较小,并且物料较小量更小。可同时适用于试验和生产。
高压均质机的基本原理:高压均质机通过将样品通过狭缝式均质阀进行高速冲击、压力释放和剪切,实现样品的均质与分散。其基本原理可归纳为以下几个关键步骤:高压流体的生成:高压均质机通过泵将样品注入到高压腔室中。泵会施加高压,使样品通过均质阀的狭缝,形成高速流动的高压流体。均质阀的作用:均质阀是高压均质机的关键部件。它由一对对称的狭缝组成,形成一个狭小的通道。高速流体通过均质阀时,流体受到狭缝的限制,产生高速剪切力和冲击力。剪切和冲击的作用:高压流体通过均质阀的狭缝时,流体分子之间发生强烈的剪切和冲击,导致样品分子和微粒之间的碰撞和摩擦。分散与均质效应:剪切和冲击力使样品中的颗粒、细胞或胶体被破碎、分散和均质,从而实现样品的粒径缩小、分散均匀和稳定性的提高。高压均质机在制药过程中,均质机有助于解决药物溶解度低、生物利用度差的问题。
从均质腔结构原理上:头一代 碰撞型:A.穴蚀喷嘴型——直接引用了高压切割和航空航天推进技术中的气蚀喷嘴结构,但是由于在超高压的作用下,物料溶液经过孔径很微小的阀心时会产生几倍音速的速度,并与阀心内部结构发生激烈的磨擦与碰撞,因此其使用寿命较短,并伴随有金属微粒残落。B.碰撞阀体型——通过碰撞阀(Impact valve)和碰撞环(Impact ring)结构的引入,降低了局部磨损,延长了均质腔的使用寿命。但是由于其根本原理上还是通过溶液中的物料和高硬度金属(如钨合金)结构碰撞,所以金属微粒的磨损残落问题没有彻底解决,并且截止到2013年,绝大多数的国产高压均质机都使用了这种结构。第二代 对射型,C.Y形交互型——根本的区别在于其应用了对射流的原理。利用特有的Y形结构,使高压溶液中高速运动的物料自相碰撞,较大程度上提高了腔体的使用寿命,并解决了金属微粒残落的问题。高压均质机可以将物质分散、均质和乳化,使其颗粒更加细小。深圳工业高压均质机
运行时能够提高原料的稳定性和细度。深圳工业高压均质机
高压均质机的应用及优势:高压均质机在生物制药中有着普遍的应用,较常见的应用的各种细胞的破碎,以释放存在于细胞内的产物。如使用大肠杆菌表达重组蛋白时,产物常以包涵体形式存在于细胞内,如胰岛素,需要使用高压均质机裂解细胞,以释放包涵体,以进行后续的纯化工作。在基于病毒的疫苗生产工艺中,由于很多病毒颗粒不能在培养过程中有效地释放到细胞外的培养基中,也需要使用高压均质机进行细胞裂解,以释放病毒颗粒。在使用大肠杆菌或酵母进行基于病毒样颗粒技术的疫苗生产中,也需要使用高压均质机进行菌体裂解,以释放生产的病毒样颗粒。深圳工业高压均质机