脂质体核酸疫苗核酸***剂是一类新兴的药物,显示出***各种疾病的潜力。然而,由于核酸是多价阴离子和高度亲水分子,它们几乎不被细胞吸收。它们也很容易被血液中的核酸酶降解。因此,它们需要一种传递载体才能进入细胞并发挥作用。LNP载体是核酸类药物的成功载体之一。核酸药物Patisiran(ONPATTRO)是一种在LNPs中配方的siRNA,用于减少肝脏中甲状腺素转运蛋白的形成,**近获得FDA批准用于***遗传性甲状腺素转运介导的淀粉样变性。它是**早获批的siRNA药物,也是**早的lnp配方核酸药物,标志着核酸***学发展的一个重要里程碑。COVID-19mRNA疫苗中的LNPs。LNPs的***成功应用是辉瑞/BioNTech和莫当纳**近批准的两种COVID-19信使RNA(mRNA)疫苗的递送载体,这两种疫苗的开发速度****,在疾病预防方面显示出显着的效果。疫苗将编码SARS-CoV-2刺突蛋白的mRNA送入宿主细胞细胞质;mRNA被翻译成刺突蛋白,刺突蛋白作为抗原,导致对病毒产生免疫反应。两种mRNA疫苗的脂质纳米颗粒的组成非常相似。由于耐药细菌的出现和传播,改进现有的药物传递系统至关重要。陕西microbubble脂质体载药
siRNA脂质体
RNA干扰(RNAi)途径允许siRNA和miRNAs负向调节蛋白表达。siRNA是21~23对核苷酸组成的双链RNA,可诱导同源靶mRNA沉默。为了发挥作用,双链siRNA分裂成两个单链RNA:乘客链和引导链。乘客链被argonaute-2蛋白降解,而引导链则被纳入RNAi诱导的沉默复合体中,该复合体结合与引导链互补的mRNA并将其切割。siRNA似乎具有***多种疾病的巨大潜力,因为它们可以很容易地下调各种靶mRNA,而不考虑它们的位置(即在细胞核或细胞质中),并且它们的特异性结合表明它们比传统化学药物诱导的副作用更少。作为一种新型的基于核酸的***策略,siRNA***与传统的化学药物相比具有许多优势。然而,为了促进基于siRNA的***方法的发展,必须克服一些挑战,包括需要识别适当的靶基因和开发优化的递送系统。许多研究人员试图利用阳离子脂质体提高siRNA的细胞递送和基因沉默效率。例如,由DC-6-14、DOPE和胆固醇组成的阳离子脂质体被用于递送萤火虫荧光素酶特异性的siRNA。当阳离子脂质体与siRNA持续剧烈搅拌混合时,转染效率提高,说明将siRNA加载到阳离子脂质体上的方法可以调节转染效率。siRNA脂丛的***应用因靶蛋白而异。 陕西microbubble脂质体载药脂质体具有生物相容性好、无免疫原性、表面易功能化等优点。
脂质体用于抑菌的***除了脂质体**药物,第二大类脂质体药物是杀菌剂。两性霉素B是一种广谱多烯***,已经在医学上使用了几十年,被认为是***侵袭性******的金标准。它以细胞膜为靶点,与含胆固醇的哺乳动物细胞膜相比,对***细胞典型的含麦角甾醇膜表现出更高的亲和力。两性霉素B虽然具有很高的抗***活性,但也有严重的副作用,尤其是肾毒性。它是两亲性的,具有复杂的自关联行为,不同类型的聚集体表现出不同的溶解度和毒性;聚集状态也与药物疗效相关。因此,控制药物的聚集状态可以增强其***效果并降低其毒性。这种聚集控制是通过脂质纳米配方实现的。几种基于脂质的纳米颗粒制剂。两性霉素B已被开发出来,表现出良好的药代动力学特征,并***减少该药物的副作用。
新型制备方法能够***提升脂质体药物的生物利用度,主要体现在以下几个方面:一、优化制备工艺提高包封率以大豆卵磷脂和胆固醇为膜材,采用薄膜分散水化法制备枸杞多糖脂质体,通过响应面法优化工艺。单因素实验表明药脂比、膜材比、水化温度均对包合率有影响。**终得到比较好工艺条件为药脂比为1∶32.15、膜材比为3.84∶1、水化温度为43.26℃,此条件下包合率较高且易于控制11。较高的包封率意味着更多的药物被包裹在脂质体中,减少了药物在运输和储存过程中的损失,从而提高了药物的生物利用度。二、采用特定技术制备高负载脂质体粉使用高压均质技术制备高负载姜黄脂质体粉,结合喷雾干燥技术,对其粒径、电位、微观结构等理化性质进行分析。结果表明,磷脂起到填充作用,使得微胶囊形状更加规则饱满。当磷脂含量10%、姜黄素含量6%时,姜黄脂质体粉具有良好的贮藏稳定性。姜黄脂质体粉明显提高了姜黄素的生物可及性,分别约为姜黄原料的11倍和商业高吸收姜黄的4倍。动物实验结果显示,姜黄脂质体粉总姜黄素的血药浓度曲线下面积(AUC)是姜黄原料的8.1倍,是商业高吸收姜黄的4.13倍13。高负载的脂质体粉能够携带更多的药物,提高药物的有效浓度,进而提升生物利用度。脂质体作为一种重要的纳米载药系统,其结构特点对不同类型药物的载药效果有着多方面的具体影响。
脂质体的结构特点脂质体是由磷脂双分子层组成的球形囊泡结构。磷脂分子具有亲水的头部和疏水的尾部,在水中自发形成双层结构,将水相包裹在其中。这种结构使得脂质体能够同时容纳亲水***物和亲脂***物。亲水***物可以被包裹在脂质体的内部水相中,而亲脂***物则可以溶解在磷脂双分子层中6。二、亲水***物的载入原理对于亲水***物,通常采用主动载药技术将其载入脂质体。主动载药技术是利用跨膜梯度来实现药物的载入。常见的跨膜梯度包括pH梯度、离子梯度等。以pH梯度为例,通过调节脂质体内外水相的pH值,形成一定的pH差。在酸性外水相和中性内水相的条件下,亲水***物以离子化形式存在于外水相,当脂质体与药物溶液接触时,药物离子在pH梯度的驱动下,通过脂质体膜进入内部水相,并在中性环境中转变为非离子化形式,从而被稳定地包裹在脂质体中25。脂质体载药实现靶向给药面临着稳定性、靶向性和药物释放控制等关键技术难点。山东脂质体载药蛋白
主动载药技术已被广泛应用于脂质体产品中,以提高药物的包封率和稳定性。陕西microbubble脂质体载药
利用设计的脂质,他们发现由1,2-二油醇-3-二甲基氨基-丙烷(DODMA)阳离子脂质组成的核酸脂质颗粒在小鼠和食蟹猴中分别以0.01mg/kg和0.3mg/kg的剂量包封siRNA时表现出基因沉默作用。**近的一项构效关系研究表明,脂质结构的细微差异可能导致转染效率的明显差异。作者设计并合成了1,4,7,10-四氮杂环十二烷环基和含咪唑的阳离子脂质,它们具有不同的疏水区域(例如,分别为胆固醇和双薯蓣皂苷配基)。结果表明,这两种阳离子脂质在HEK293细胞中诱导有效的基因转染。陕西microbubble脂质体载药