海洋油气田的开发开采环境和工况极其恶劣,因此要求井下工具具有很高的强度和高耐磨、优良自润滑性、耐腐蚀和耐冲蚀等综合性能,气相沉积、电镀钨合金、QPQ盐浴复合处理等技术都可以提高表面硬度,但是又有各自的适应特性,气相沉积技术在提高工具耐磨和耐冲击性能具有明显的优势,电镀钨合金技术在提高工件的耐蚀性能上占明显优势,而工研所QPQ盐浴复合处理技术不仅在耐磨和耐冲蚀性具有优势,同时,还适合解决不锈钢螺纹黏扣和金属密封等问题。成都工具研究所有限公司的QPQ表面处理技术可以使刀具具备更好的切削性能。高耐磨QPQ处理技术
工研所QPQ表面复合处理技术在汽车、摩托车、纺织机械、轻化工机械、工程机械、农业机械、仪器仪表、机床、齿轮、工具、具等行业有广泛的应用前景。随着现代机器制造业的发展,对金属材料的性能提出了更高的要求,另一方面由于在环保方面的严格限制,很多老的污染环境的表面强化和防腐技术纷纷被淘汰。在这种形势下,环保的低温盐浴复合处理技术——QPQ更符合当下的需求。当年,这种技术不仅原料无毒,并且做到了全工艺过程环保,因此获得德国环保奖。同时这种新的表面强化改性技术比普通常规强化方法可以成数量级地提高金属表面的耐磨性和耐蚀性。机床QPQ硫氮碳共渗QPQ表面处理可以提高刀具的抗氧化性能。
在QPQ的生产过程中,会有一定的废水、废气、废渣产生,我们需要采取相应的措施,使其符合排放标准。工研所QPQ生产过程中产生的废水主要是来自工件从氧化炉出来后清洗工件时所产生的,虽然从氮化炉中带出的少量氰根在氧化炉中完全被分解,但是氧化盐呈碱性不能直接排放,需要使用硫酸氢钠或硫酸等酸性物质将其中和直到pH值在8~9才可排放;工研所QPQ生产过程中的废气主要来源于调整盐的添加和工件氧化时发生化学反应产生的氨气和粉尘,QPQ在熔炼基盐和添加调整盐时会产生氨气,刺激嗅觉,废气排放必须采用排气筒(烟囱)排放,废气治理的主要工艺流程主要是:布袋除尘→喷淋式吸收塔吸收氨气→15mL排气筒排放;工研所QPQ生产过程中的废渣主要来源于氮化盐和氧化盐,为了保证盐浴的清洁度,通常将沉渣器放入氮化炉中,待取出冷却后沉积在沉渣器底部的黑色颗粒是无毒的铁渣,只有少量白色物为残留的氮化盐,残留的氮化盐中含有低浓度的氰根,不能随意丢弃,可放入氧化盐浴中进行中和处理,氧化盐的渣主要来源于工件带入的氮化盐和氧化盐反应的产物以及工件表面疏松层脱落的铁离子形成的铁渣,可以视同热处理盐浴炉炉渣一样处理。
工研所的QPQ处理技术,是一种创新的金属盐浴表面强化改性技术。它通过将金属置于两种具有不同性质的低温熔融盐浴中进行复合处理,促使多种有益元素同时渗入金属表面,形成独特的复合渗层。这一渗层由致密的氧化膜、牢固的化合物层以及深入的扩散层共同构成,实现了对金属表面的整体强化改性。尤为值得一提的是,QPQ技术的全工艺过程绿色环保,无任何有害物质排放,完全符合现代工业的绿色生产要求。与传统的单一热处理技术和表面防护技术相比,QPQ技术能够同时、大幅度地提升金属表面的耐磨性和耐蚀性,从而明显延长金属制品的使用寿命,提高其综合性能。这一独特的技术优势,使得QPQ技术在金属表面处理领域展现出了广阔的应用前景。成都工具研究所有限公司的QPQ表面处理技术在刀具行业内享有很高的声誉。
工研所于上世纪80年代打破国际垄断,成功自主研发QPQ技术。其中的技术关键是自主开发了成分独特的氮化盐浴的配方,其中添加了一种特殊的氧化剂,使盐浴中的有害氰酸根含量保持在质量分数为0.2%以下,为德国的的10%,达到了国际先进水平。同时盐浴中的有效成分氰酸根含量长期保持稳定。同时还开发了能够彻底分解氰酸根的氧化盐浴配方,因此完成了环保的QPQ技术开发的全过程。同时,工研所能为客户提供详细技术资料,成套工艺方案,设备图纸,成套专业设备(根据客户实际需求设计咨询),长期供应生产用盐,技术咨询,现场咨询服务,帮助客户达到稳定投产,并实行终身技术服务。QPQ表面处理可以提高刀具的抗磨性和耐蚀性。高耐磨QPQ处理技术
QPQ表面处理可以减少刀具的切削力。高耐磨QPQ处理技术
气体渗氮是在含有活性氮、碳原子的气氛中进行低温氮、碳共渗从而获得以氮为主的氮碳共渗层。气体氮化的常用温度为560-570℃,在该温度下氮化层硬度值高,氮化时间通常为2-3h,随着时间延长,氮化层深度增加缓慢。相较于QPQ处理工艺,虽然气体渗氮在耐磨性方面表现良好,但是它的生产周期太长,且必须采用特殊的渗氮钢,表面生成的Fe2N相脆性较大。工研所QPQ技术成产周期短,适用钢种广,且表面生成韧性较高的Fe2~3N相,同时由于工件几乎不变形,处理后不必进行磨加工。特别是原来以抗蚀为目的的气体渗氮,采用工研所QPQ技术以后,耐蚀性会有很大提高。高耐磨QPQ处理技术