在工研所QPQ技术的日常生产中,QPQ盐的质量对工件表面的化合物层特性,包括深度、硬度以及疏松级别,具有至关重要的影响。其中,基盐中的氰酸根浓度是一个关键指标,其精确控制是QPQ技术质量控制流程中的重要环节。为了准确检测并调整基盐中的氰酸根含量,经典的甲醛定氮法被广泛应用。这一方法需要精心配制甲基红和亚甲基蓝的混合指示剂,以确保在加入酸碱时能够精确控制反应进程。随后,通过加入过量的甲醛,溶液中的氨态氮会被转化为氢离子。在酚酞指示剂的作用下,利用氢氧化钠对转化后的氢离子进行滴定。通过记录滴定过程中消耗的氢氧化钠量,可以精确地推算出基盐中氰酸根的浓度。这一检测与调整过程不仅确保了QPQ处理中盐的质量,也为工件表面形成高质量化合物层提供了有力保障,从而进一步提升了工件的整体性能和使用寿命。QPQ表面处理可以提高刀具的抗磨损性能。金属表面QPQ盐浴
H13作为应用较为广且具有代表性的热作模具钢,在高温下因拥有较高的热硬性、冲击韧性、耐磨性以及切削加工性,所以通常应用于热挤压和压铸模具的制造。由于H13模具钢在服役过程中表面会受到一定程度的磨损与腐蚀,所以利用表面技术来提高H13模具钢的性能,延长使用寿命具有重要的意义。经过工研所QPQ处理后,表面硬度增加,由基体的490HV增加到1100HV,且磨损失重量不到基体的十分之一,造成该现象的原因是经过QPQ工艺处理后,CrN和Fe2~3N等高硬度、高耐磨氮化物以及低摩擦系数Fe3O4形成于H13模具钢表面,使其表现出良好的抗磨损性能。气门QPQ疏松层QPQ表面处理可以提高刀具的抗磨性和耐蚀性。
工研所QPQ表面复合处理技术在汽车、摩托车、纺织机械、轻化工机械、工程机械、农业机械、仪器仪表、机床、齿轮、工具、具等行业有广泛的应用前景。随着现代机器制造业的发展,对金属材料的性能提出了更高的要求,另一方面由于在环保方面的严格限制,很多老的污染环境的表面强化和防腐技术纷纷被淘汰。在这种形势下,环保的低温盐浴复合处理技术——QPQ更符合当下的需求。当年,这种技术不仅原料无毒,并且做到了全工艺过程环保,因此获得德国环保奖。同时这种新的表面强化改性技术比普通常规强化方法可以成数量级地提高金属表面的耐磨性和耐蚀性。
不锈钢分为奥氏体不锈钢、马氏体不锈钢以及铁素体不锈钢,适用于室外潮湿环境,具有很强耐腐蚀性能的304属于奥氏体不锈钢。奥氏体不锈钢由于含碳量低,是不能通过热处理来提高硬度的,如果表面要进行硬化处理,可以通过低温离子渗氮处理(QPQ),304不锈钢中的铬和氮元素有较好的亲和力,可以在氮化过程中生成弥散分布的氮化物起到硬化作用,成都工具研究所QPQ表面复合处理技术处理后的维氏硬度可达1000HV,同时还能保持不锈钢的耐腐蚀性能。QPQ表面处理可以提高刀具的抗氧化性能。
达克罗表面处理技术是一种防腐蚀涂层技术,主要用于金属制品的表面保护。它采用化学镀的方法,将一层具有防腐蚀性能的无机镀层均匀地覆盖在金属表面。这种镀层主要由超细鳞片状锌、铝和铬等组成,由于片状锌、铝层状重叠,阻碍了水、氧等腐蚀介质与钢铁零件的接触,同时在达克罗的处理过程中,铬酸与锌、铝粉和基体金属发生化学反应,生成致密的钝化膜,这种钝化膜具有很好的耐腐蚀性能,该工艺对螺栓固件的应用较广。该技术主要用于防腐蚀保护,而膜层本省的硬度不高,不具备一定强度的耐磨性。而工研所QPQ技术在提高金属制品的表面硬度和耐磨性的同时,依靠表面的氧化膜和氮化物层可大幅度提高工件的防腐能力,它更多地用于提高金属制品的硬度和耐磨性以及防腐性。成都工具研究所有限公司的QPQ表面处理技术在刀具行业内享有很高的声誉。气门QPQ液体氮化
成都工具研究所有限公司的QPQ表面处理技术可以提高刀具的加工精度。金属表面QPQ盐浴
工研所的《QPQ盐浴复合处理技术及其成套设备》荣获国家科技进步二等奖、四川省科技进步一等奖,同时是国家重点推广新项目,编著《QPQ技术的原理与应用》行业专著一部,参与编写制定QPQ行业标准。团队通过承接国家、省部级科研项目如《石油管用深层QPQ防腐技术的开发研究》、《深层QPQ盐浴奥氏体氮碳共渗与氧化工艺的研究与开发》、《超深层QPQ技术的研发》等,先后开发出第二代QPQ处理技术、超深层QPQ处理技术,低温QPQ处理技术并实现推广应用。金属表面QPQ盐浴