石油化工领域是一个充满挑战的工作环境,其中的管道系统常常处于高温高压的状态。这里面输送的介质,无论是气体还是液体,很多都是易燃易爆的危险物质。以炼油厂为例,炼油厂就像一个庞大而精密的机器,流体输送系统是其运转的血脉。在这个系统里,电动执行机构就如同精确的流量管家,能够对气体或液体的流量进行精确调节。它之所以能够在这种复杂危险的环境下工作,是因为其具备防爆设计,例如Exd II CT4认证就是其安全性的重要保障。这种认证意味着执行机构在面对可能存在的易燃易爆气体、蒸汽或粉尘等危险环境时,能够有效防止危险的发生,确保整个炼油厂的安全生产。拨叉式气动执行机构体积小,重量轻、便于安装。执行器技术
电动执行机构从集成化程度与负载能力划分,主要分为 紧凑型(智能一体化结构)和重载型(模块化设计)。紧凑型:采用高度集成化设计,将电动机、减速器、控制器等关键组件封装于单一壳体内,形成紧凑的一体化结构。其优势在于体积小、重量轻,防护等级达到IP68,适用于轻载场景。此外,非侵入式设计允许不开盖调试,搭配行星齿轮减速机构,兼具高效传动与低维护需求。重载型:采用模块化架构,电动机与减速器分离封装,通过多转式执行机构与蜗轮蜗杆减速箱组合实现高扭矩输出(可达225,000kgf·m)。两类执行机构分别覆盖轻载精密控制与重载工业场景,通过差异化的结构设计实现从常规自动化到关键工艺控制的全领域覆盖。化工分体式执行器模块拨叉式气动执行机构传动配合精密,调节精度更高。
阀门执行机构的多样化驱动方式是其适应各种复杂工况的关键。不同的工况对能源类型有着不同的要求,而阀门执行机构支持电动、气动、液动等多种能源类型,这就为其在众多领域的广泛应用奠定了基础。电动执行机构依靠电力驱动,这种方式通常适用于对控制精度要求较高的场合。例如在一些高精度的电子芯片制造车间,对于洁净室内的气体流量控制要求极高,电动执行机构能够凭借其稳定的电力供应和精确的控制能力,满足这种严苛的生产环境需求。气动执行机构则是利用压缩空气作为动力源,它的比较大优势在于响应速度快。在一些需要快速反应的系统中,如某些自动化的冲压设备生产线,当需要瞬间改变阀门状态来控制气体或液体的流动时,气动执行机构能够迅速地完成动作。液动执行机构以液压油为动力,其输出力矩较大。在大型水利工程中的水闸控制,或者重型机械制造中的大型液压系统中,液动执行机构能够轻松应对高压大口径阀门的控制需求,因为它能够提供足够大的力量来驱动这些大型阀门的开闭。
拨叉式气动执行机构的分类:按照作用类型的不同,可分为单作用拨叉式气动执行机构和双作用拨叉式气动执行机构。执行机构的开关动作都是通过气源驱动完成的,就是双作用拨叉式气动执行机构;而只有开动作是由气源驱动完成,关动作为弹簧复位的就是单作用拨叉式气动执行机构。按照结构的不同,可分为单气缸活塞式和双气缸活塞式。按主要材质的不同,可分为铝合金型、不锈钢型、碳钢型等。高于7000Nm的扭矩要求时,齿轮齿条式执行机构往往不符合成本效益,而大功率拨叉式气动执行器可以提供更高的扭矩输出,可达到10000Nm。拨叉式气动执行机构是一种利用压缩空气作为动力源,通过拨叉传动方式来驱动阀门或其他机械部件的装置。
在任何工业系统中,安全始终是首要考虑的因素。阀门执行机构的故障安全设计体现了这一理念。它可以被配置为“故障开”或“故障关”模式,这是一种非常重要的安全保障措施。在一些特定的工业流程中,一旦阀门执行机构出现故障,系统需要确保流体能够按照预先设定的安全状态流动。例如,在消防系统中,当火灾发生时,如果阀门执行机构出现故障,阀门应该处于“故障开”状态,确保消防水能够及时地喷洒到火灾现场。而在一些防止有毒气体泄漏的系统中,如果执行机构故障,阀门应处于“故障关”状态,阻止有毒气体的泄漏。这种故障安全设计能够在极端情况下极大程度地确保系统安全,避免可能发生的灾难性后果。电动执行机构广泛应用于电力、石油、化工等多个行业,确保了各种阀门和挡板的精确控制。石化拨叉式执行器制造商
环境温度的变化会对电动执行机构的性能产生一定影响,因此需要关注其温升指标。执行器技术
伺服放大器作为电动执行机构的关键控制单元,具体工作流程可分为三个关键阶段:信号综合与偏差检测:系统接收来自DCS或调节器的标准信号(4-20mA DC)后,前置磁放大器将输入信号与执行机构的位置反馈信号进行综合比较。磁放大器内部采用四组坡莫合金环结构,通过偏移绕组和反馈绕组实现信号叠加,产生与偏差成比例的电压信号。功率放大与驱动控制:当检测到偏差时,触发电路将偏差信号转换为晶闸管的触发脉冲。正偏差触发固态继电器导通,驱动电机正转;负偏差则触发反向回路,电机反转。新型伺服放大器采用过零触发固态继电器技术,既能输出高达150VA的驱动功率,又避免了电网污染。闭环动态调节:执行机构动作时,位置发送器实时将阀位转换为电阻或电流信号反馈至输入端。当反馈信号与输入信号的差值小于死区阈值(通常±1%)时,触发电路停止输出,电机进入制动状态。这种PID调节机制可使定位精度达到±0.5% FS,重复误差不超过±0.1%。执行器技术