传统铸造工艺通常依赖于模具来制作砂型,模具的设计和制造过程繁琐且耗时。对于复杂形状的铸件,模具的设计难度大,需要投入大量的人力、物力和时间。而且,一旦模具制造完成,若要对铸件进行修改或调整,往往需要重新制作模具,成本高昂。随着市场对产品个性化、多样化需求的不断增加,以及产品更新换代速度的加快,传统铸造工艺的局限性愈发凸显。3D 打印技术,又称增材制造技术,起源于 20 世纪 80 年代。它通过逐层堆积材料的方式构建物体,突破了传统加工工艺的限制,能够制造出任意复杂形状的物体。将 3D 打印技术引入铸造领域,便形成了 3D 砂型打印技术。该技术利用数字化模型,通过特定的打印设备,将砂粒与粘结剂逐层堆积固化,直接制造出砂型,无需传统的模具制作过程,为铸造行业带来了全新的解决方案。我们的产品涵盖多个领域,满足您的不同需求——淄博山水科技有限公司。黑龙江喷墨3D打印砂型
喷头对粘结剂或其他材料的喷射量控制精度同样至关重要。在光固化成型工艺中,喷头需要精确控制液态光敏树脂的喷射量,以确保每层砂型材料的均匀分布和固化效果。如果喷射量不稳定,例如在某一层喷射的光敏树脂过多,该层固化后会比正常厚度增厚,导致砂型表面出现局部凸起;反之,喷射量过少则会使砂型局部强度不足,甚至出现孔洞。在实际生产中,由于喷头内部结构复杂,如压电式喷头的压电陶瓷元件性能波动、热发泡式喷头的加热元件温度不均匀等,都可能导致喷射量控制精度出现偏差,影响砂型精度。甘肃砂型3D打印加工以3D砂型打印之精,铸砂型质量之魂——淄博山水科技有限公司。
热熔性材料温度:在熔融沉积成型工艺中,热熔性材料的温度对砂型精度同样关键。热熔性材料需要在喷头内加热至合适的熔融温度,以保证其具有良好的流动性,能够顺利挤出并均匀堆积。如果材料温度过低,材料的流动性差,喷头挤出困难,可能会导致砂型出现孔洞或局部材料堆积不足的情况。例如,当热熔性材料的温度比比较好熔融温度低 10℃时,喷头挤出的材料呈断断续续的状态,打印出的砂型表面不平整,尺寸精度无法保证。而材料温度过高,会使材料的粘度降低,挤出后容易流淌,影响砂型的形状精度。因此,需要根据热熔性材料的特性,精确控制喷头内的温度,确保砂型打印精度。
对设备运动稳定性的影响:打印速度还会对设备的运动稳定性产生影响。在高速打印时,设备的运动部件,如喷头、打印平台等,需要承受较大的惯性力。如果设备的运动系统刚性不足或控制精度不够,在高速运动过程中可能会出现抖动或位移偏差,从而影响砂型的精度。例如,在打印一个大型砂型时,如果打印速度过快,打印平台在快速升降过程中可能会出现晃动,导致每层砂型在垂直方向上的位置不准确,终影响砂型的整体精度。材料固化温度:在光固化成型工艺中,温度对光敏树脂的固化过程有着重要影响。合适的固化温度能够使树脂充分固化,形成稳定的砂型结构。如果固化温度过低,树脂固化不完全,砂型的强度和精度都会受到影响,可能出现砂型局部发软、变形等问题。例如,当固化温度低于树脂的佳固化温度10℃时,砂型在脱模后可能会出现明显的变形,尺寸精度严重下降。相反,固化温度过高,树脂可能会发生过度固化,导致砂型收缩率增大,出现开裂等缺陷。在实际打印过程中,需要精确控制固化温度,一般通过设备的温度控制系统将温度波动控制在±2℃以内,以保证砂型的精度和质量。 选择3D砂型打印,就是选择可靠稳定的砂型制造途径——淄博山水科技有限公司。
批次稳定性:材料的批次稳定性也是影响砂型精度的重要因素。不同批次的砂粒或粘结剂,其化学成分、物理性能等可能存在一定差异。如果在生产过程中频繁更换材料批次,且不同批次材料之间的差异较大,会导致砂型质量不稳定,精度难以控制。例如,某企业在3D砂型打印过程中,由于使用了不同批次的硅砂,且不同批次硅砂的粒度分布和化学成分存在明显差异,导致打印出的砂型在尺寸精度和强度方面出现较动,废品率大幅上升。层厚对精度的直接影响:层厚是3D砂型打印中的一个重要工艺参数,它直接决定了砂型在垂直方向上的分辨率。较小的层厚能够使砂型在垂直方向上的细节表现更加精确,从而提高砂型的精度。在光固化成型工艺中,若将层厚从减小到,砂型在垂直方向上能够呈现出更细腻的结构,对于一些带有精细纹理或复杂曲面的砂型,能够更好地还原设计模型的形状。然而,层厚过小也会增加打印时间和数据处理量,降低生产效率。相反,较大的层厚虽然能够提高打印速度,但会使砂型在垂直方向上的台阶效应更加明显,导致砂型表面粗糙度增加,尺寸精度下降。例如,当层厚设置为时,对于一个带有斜面的砂型,在斜面上会出现明显的台阶状结构,影响砂型的表面平整度和尺寸精度。 让每一个顾客都满意是我们永恒不变的追求和使命——淄博山水科技有限公司。吉林3D打印砂型加工
3D砂型打印,在保证质量的前提下降低砂型制作成本——淄博山水科技有限公司。黑龙江喷墨3D打印砂型
随着制造业对复杂砂型需求的不断增长,3D砂型打印技术凭借其独特优势成为铸造领域的关键创新力量。在这一技术体系中,多种打印工艺应运而生,每种工艺都有其独特的原理、特点及适用场景。深入了解常见的3D砂型打印工艺及其区别,对于企业和研究人员根据具体需求选择合适的工艺,充分发挥3D砂型打印技术的潜力至关重要。粘结剂喷射成型工艺是目前应用较为的3D砂型打印工艺之一。其原理是通过喷头将液态粘结剂选择性地喷射到铺好的砂层上,粘结剂与砂粒发生化学反应或物理作用,使砂粒在特定区域粘结固化,形成该层砂型的形状。逐层重复这一过程,终堆积出完整的三维砂型。例如,在打印一个复杂的机械零件砂型时,打印设备会根据设计好的三维模型切片数据,在每一层砂面上精确喷射粘结剂,将砂粒粘结成相应的二维形状,经过层层叠加,构建出整个砂型。 黑龙江喷墨3D打印砂型