在非导电聚合物基体中加入导电填料通常能使聚合物表现出一定的导电性,而且聚合物导电性随着填料含量的增加呈现出一种非线性的提高。当在填料添加量达到某一个数值,即逾渗阈值时,这些填料能在基体中形成导电网络,使复合材料的导电性能大幅度增强。因此,石墨烯本身良好的导电性以及宽高比决定了它可以作为一种理想的无机相来制备导电复合材料。相比于对石墨烯基复合材料导电性能的研究,对聚合物/石墨烯复合材料导热性能的研究要少很多,这可能是由于在碳纳米管增加聚合物导热性能的研究中效果不甚理想的缘故。不同于导电性的增强,好的导热性需要很强聚合物与填料之间的结合力。因此,原位聚合法在制备导热性能良好的复合材料时具有一定的优势。氧化石墨烯分散液在水中具有很好的分散性,样品单层率>90%,产品经轻微搅拌就可与水相互溶。福建制备石墨烯复合材料价格
在工业上目前使用的导热高分子材料有导热复合塑料、导热胶黏剂、导热涂层、导热覆铜板及各类导热橡胶及弹性体,如热界面弹性体等。目前复合型绝缘导热高分子主要是采用绝缘导热无机粒子如氮化硼、氮化硅和氧化铝等和聚合物基体复合而成;此外,采用导体粒子和聚合物复合制备的导热聚合物,如碳材料、金属填充的导热高分子材料,适用于低绝缘或非绝缘导热场合,其中氧化石墨烯同聚合物复合,其复合材料的导热性能大幅提升引起社会关注。导热高分子主要应用于功率电子元器件、电机等设备的封装和电气绝缘及散热,和普通聚合物相比,具有4-10倍的热导率。常州制造石墨烯复合材料图片氧化石墨烯分散液(SE3122、SE3522)。
石墨烯先和聚合物单体或者预聚物混合均匀,有时候也可以在合适的溶剂中混合,然后进行聚合反应。化学改性或者还原的氧化石墨烯表面含有或残留一些官能团,这些官能团能直接与聚合物共价连接,也能作为反应点对石墨烯进行进一步的改性,比如利用ATRP共价接枝上聚合物链[138,159]。目前报道的利用原位聚合法制备的复合材料包括聚氨酯[160]、聚苯乙烯[161]、聚甲基丙烯酸甲酯[162]、环氧树脂[163,164]、聚硅氧烷[140]等。原位聚合法的优点在于它能使聚合物和填料之间形成很强的界面作用,有利于应力传递,同时也能使纳米填料均匀的分散在基体中。但是,体系的粘度通常会随着聚合反应的进行而增加,这会给后续处理以及材料成型上带来一定的麻烦。
随着工业生产和科学技术的发展,人们对导电材料提出了更新、更高的要求。目前,导电高分子材料的研究主要集中在碳系导电填料填充热塑性基体类上,而石墨烯[1](GNS)作为一种新型的单原子层碳材料,因其独特的结构对改善聚合物的力学性能、电性能和热性能等具有很大的潜力。GNS的制备方法主要有:化学气相沉积法[2,3]、外延生长法[4]和氧化还原法[5]等。相比而言,氧化还原法具有成本低、产率高等特点,有望成为规模化制备GNS的有效途径之一。超高分子量聚乙烯(UHMWPE)具有极好的耐磨性,良好的耐低温冲击性和自润滑性。本文采用溶液混合、超声分散的方法制备了GNS/UHMWPE复合材料,发现GNS能均匀地分散到UHMWPE基体中;同时研究了GNS/UHMWPE复合材料的室温导电行为和阻-温特性。氧化石墨易于接枝改性,可与复合材料进行原位复合。
外,其他方面的应用也和聚合物导电性的提升紧密相关。例如,应用原位聚合法可以将氧化石墨烯与导电聚合物材料进行复合。这一方法可以在保证制备得到的超级电容器电极高充放电性能和高稳定性的同时提升电容器的安全性。聚合物和氧化石墨烯复合材料已经被广泛应用于电容器电极材料中,制备的电容器电极材料的比电容可达421.4F/g甚至更高50-52。因此,还原后的氧化石墨烯作为填料对提升聚合物的导电性能具有明显的效果,极大地促进了各种高分子材料在电容器及多种电子元件生产中的应用。石墨烯防腐浆料 与粉料相比,浆料中的石墨烯更易于分散在基体材料中。云南制造石墨烯复合材料图片
石墨烯抗静电阻燃复合材料高氧指数,以及良好的流动性与力学性能。福建制备石墨烯复合材料价格
许多对聚合物/碳纳米管纳米复合材料的研究目的在于开发和利用碳纳米管出色的力学性能,同时对聚合物基体引入一些新的性能,比如导电性、导热性等。但是,尽管许多工作集中在聚合物/碳纳米管纳米复合材料的研究上,许多问题仍然存在。相比于碳纳米管,制备基于石墨烯的结构和功能体系更加可行,这是因为石墨烯具有更大的比表面积,更强的界面结合力,以及同样出色的物理性能。完美石墨烯的杨氏模量和断裂强度高达1TPa和130GPa[41],而制备复合材料**常用的改性及还原石墨烯的杨氏模量也可达到250GPa[57,58],高出一般的聚合物2~3个数量级,因此,在聚合物中加入改性或还原石墨烯同样能有效地增强聚合物的力学性能。福建制备石墨烯复合材料价格