请穿实验服并戴一次性手套操作。8)本产品只作科研用途!D-荧光素钾盐是荧光素酶的水溶性底物,存在于多种发光生物体中。在ATP和荧光素酶的催化作用下,D-荧光素钾被氧化,产生蓝绿色的光(560nm),当底物过量时,产生的Chemicalbook光量子数与荧光素酶的浓度呈正相关。编码荧光素酶的Luc基因是植物、哺乳动物细胞的常用报告基因。由于没有背景干扰,因此可以很容易地检测出低至。用途D-荧光素钾盐是一类在生物体中发现的能引起生物发光的杂环化合物,如萤火虫。在ATP存在下,萤光素酶将其氧化脱羧后会发光。化学研究中可用于荧光素酶的基板。生物活性D-Luciferin是萤火虫荧光素酶的底物。体外研究D-luciferinisthenaturalsubstrateoftheenzymeluciferase(Luc),μM.体内研究Bioluminescenceimaging(BLI)usingthefireflyluciferase(Fluc)(5,10,15,and20min)μLofD-luciferin(intraperitoneallyorintravenously)stocksolutionpergramofbodyweight:normally~200μLfora20gmouseforastandard150mg/(eitherPotassiumorSodiumSalt)atroomtemperatureanddissolveindPBS。D-荧光素盐也算是钠盐和钾盐。盐城萤火虫荧光素酶D-荧光素钾盐使用说明
萤光素酶(英文名称:Luciferase)是自然界中能够产生生物荧光的酶的统称,其中**有代表性的是一种学名为Photinuspyrali'的萤火虫体内的萤光素酶,萤火虫发光的腹部或海洋的蓝色发光波浪将大自然中生物发光奇迹呈现于世。在生物化学和分子生物学的早期,这一现象被认为是发展生物分析的有力平台。1991年,Promega发布了***代萤光素酶分析产品,并启动了基于萤光素酶的进一步创新计划,通过持续致力于研究和创新生物发光系统建立了各种不同的分析技术。Promega萤光素酶技术发光史里程碑AGlo-ingHistoryofInnovationandDiscovery1990年12月,Promega***提出萤火虫萤光素酶(Luc)作为一种新兴报告基因技术的应用可能性。当时的人们认为,萤火虫萤光素酶具备的生物发光特性、极高的灵敏度和快速简单的检测流程等特点,可能会对分子生物学家的研究产生重要的影响。几个月后,***代萤火虫萤光素酶报告基因载体和检测试剂在Promega诞生,使这项新技术正式并更***地为全球研究人员服务。随后30年里,Promega不断在萤光素酶实验工具领域推陈出新,保持技术***的地位。这里提到的萤光素酶即荧光素酶。[1]1991萤光素酶检测系统。盐城萤火虫荧光素酶D-荧光素钾盐使用说明南京D-荧光素钾盐测试公司有哪几家。
LAR)Promega公司推出的第一种萤光素酶检测试剂LuciferaseAssaySystem(LAR),为灵敏、非放射性的报告基因检测拉开了序幕。LAR与萤火虫萤光素酶(luc)报告基因一起,为研究人员开始了解基因表达调控因子提供了首要的工具。[1]1995Dual-Luciferase?报告基因检测系统(DLR)DLR是第一种允许在单个样本中依次检测两个报告基因的试剂。通过允许萤光素酶活性的内部归一化,在提高报告基因检测的可靠性方面取得了关键进展。此外,pGL3报告基因载体系列具有改良后的萤火虫萤光素酶基因,luc+。这个改造一种报告基因以实现性能改进的例子后来被进一步应用到pGL4和luc2报告基因上,通过生物信息学和合成方法,实现了更大的改进。[1]1999ENLITEN?/UltraGlo?重组萤光素酶Promega公司在早期推出的一种重组萤火虫萤光素酶(Enliten)基础上,改造出了一种称为UltraGlo?的热稳定性萤光素酶。UltraGlo?的开发是在各种检测和储藏条件下进行一步法“加样-读数”检测的关键。此后,通过开发新的方法来改变萤火虫萤光素酶检测的信号动力学,例如Bright-Glo?、Steady-Glo?和Dual-Glo?允许使用微孔板进行检测。而“加样-读数”的形式简化了样品处理。
每孔加入100μl养24h后,Luciferin使其终浓度为150μg/ml,PBS,再加入D-立即用活题成像系统检测,分析发光强度与细胞数之间的相关性。4)细胞生长曲线绘制MCF7-luc细胞和作为对照取表达荧光素酶的MCF-7细胞,接种于24孔板,接种密度为2×104/孔。细胞接种后1~7d,每天胰蛋白酶消化其中3孔细胞,用细胞计数仪测定细胞数。以细胞生长天数为横坐标,细胞数目为纵坐标,分别绘制两种细胞生长曲线。二.动物模型BLAB/c裸鼠皮下移植瘤模型的建立BLAB/cnu/nu裸鼠,4~5周龄,体重(15±2)g,雌雄各3只。取对数生长期的MCF-7用PBS重悬为2.5×10/ml悬液,每只裸鼠左右背侧近腋部皮下接种100μl,共接种6只。接种后第5d采用德国BERTHOLD公司的活题成像系统检测信号强度。以后每5d观测一连续观测30d。观测前每只裸鼠戊巴比妥钠麻醉(计量为:35mg/kg体重),按150mg/kg体重的量腹腔注射luciferin(invivograde),10min后,进行活题成像观察皮下肿大的瘤的生长情况,定量分析各时间点的荧光值。绘制肿大的瘤皮下生长曲线.MCF-7-luc细胞裸鼠皮下移植瘤的病理形态学观察MCF-7-luc细胞裸鼠皮下接种后25d,脱颈处死小鼠,取肿大的瘤组织,制成石蜡切片,切片厚度为3μm。做D-荧光素钾盐测试工作液是先用现配。
常见的荧光素酶有两种,分别是萤火虫荧光素酶(fireflyluciferase,编码基因是luc)和海肾荧光素酶(Renillaluciferase,编码基因是Rluc),前者的底物是D-Luciferin,后者的底物是Coelenterazine。它们共同的作用原理是在ATP和荧光素酶的催化作用下,底物被氧化发光(不同底物光的颜色和波长不同),当底物过量时,产生的光量子数与荧光素酶的浓度呈正相关性。***成像技术(opticalinvivoimaging)目前主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术,生物发光法是基于荧光素酶能催化底物(D-Luciferin或Coelenterazine)化学发光的原理,将体外能稳定表达荧光素酶的细胞株植入动物体内,与后期注射入体内的底物发生反应,利用光学系统检测光强度,间接反映出细胞数量的变化或细胞的定位。这项技术已被广泛应用于多个领域常用的有**或疾病动物模型的建立,并可用于病毒学研究、siRNA研究、干细胞研究、蛋白质相互作用研究等。以下主要介绍D-Luciferin(D荧光素)的分类:D-Luciferin:有三种,分别是D-Luciferin,SodiumSalt/D荧光素钠盐、D-Luciferin,PotassiumSalt/D-荧光素钾盐和D-LuciferinFirefly,freeacid/D-萤火虫荧光素。D-荧光素钾盐适用于哪些领域?扬州游离酸D-荧光素钾盐应用
荧光素酶作用下的D-荧光素钾盐。盐城萤火虫荧光素酶D-荧光素钾盐使用说明
更为人所知的发光生物是萤火虫,而其所采用不同的荧光素酶与其他发光生物如荧光菇(发光类脐菇,Omphalotusolearius)或许多海洋生物都不相同。在萤火虫中,发光反应所需的氧气是从被称为腹部气管(abdominaltrachea)的管道中输入。一些生物,如叩头虫,含有多种不同的荧光素酶,能够催化同一荧光素底物,而发出不同颜色的荧光。萤火虫有2000多种,而叩甲总科(包括萤火虫、叩头虫和相关昆虫)则有更多,因此它们的荧光素酶对于分子系统学研究很有用。目前研究得更透彻的荧光素酶是来自Photinini族萤火虫中的北美萤火虫(Photinuspyralis)。免疫荧光法免疫荧光法的基本原理是将已知的抗体或抗原分子标记上荧光素,当与其相对应的抗原或抗体起反应时,在形成的复合物上就带有一定量的荧光素,在荧光显微镜下就可以看见发出荧光的抗原抗体结合部位,检测出抗原或抗体。常用的荧光素有①异硫氰酸荧光素(fluoreceinisothiocyante,FITC),为黄色、橙黄色或褐黄色结晶粉末,有两种异构体,易溶于水和酒精等溶剂。分子量为389,更大吸收光谱为490~495,更大发射光谱为520~530urn,呈现明亮的黄绿色荧光,是更常用的标记抗体的荧光素。②四甲基异氰酸罗达明。盐城萤火虫荧光素酶D-荧光素钾盐使用说明