这是一种小分子(19kDa)单体酶,具有独特的底物,其灵敏度比已具备高灵敏度的萤火虫或海肾萤光素酶系统高约100倍。这种新型的报告基因有着***的应用前景,为进一步的技术开发奠定了基础。[1]2015NanoBRET?技术NanoLuc?的小体积和非常明亮的光输出是作为蛋白质标签的理想特征。这些特征还很适合作为生物发光共振能量转移(BRET)的供体。一项针对各种能量受体荧光基团的深入研究发现,红色光谱中的可选择性有助于消除与BRET测定相关的一些挑战。可将这些荧光基团添加到蛋白质配基等分子中以测量靶蛋白的结合,或与HaloTag?配基耦联以进行活细胞中蛋白质:蛋白质相互作用的检测。[1]2016NanoBiT?技术随着NanoLuc?的诞生,Promega的科学家努力将该报告基因改造为多亚基系统,即“NanoLuc?BinaryTechnology”或NanoBiT?。该系统由两部分组成:11个氨基酸的小标签和一个更大,更精细的NanoLuc?亚基,LgBiT。这两部分结构互补结合,重组为一个明亮的萤光素酶。这些亚基的亲和力可以和SmBiT肽一样低,从而可以进行蛋白质相互作用的测定;也可以和HiBiT一样高,从而允许自我组装。[1]2017HiBiT?技术基于NanoBiT?系统的研究。D-荧光素钾盐测试方法是体外生物发光检测。徐州萤火虫荧光素酶D-荧光素钾盐生物公司
随后30年里,Promega不断在萤光素酶实验工具领域推陈出新,保持技术带跑的人的地位。这里提到的萤光素酶即荧光素酶。1991萤光素酶检测系统(LAR)Promega公司推出的7b0a8f9c-3a4b-41a1-a7f8-3萤光素酶检测试剂LuciferaseAssaySystem(LAR),为灵敏、非放射性的报告基因检测拉开了序幕。LAR与萤火虫萤光素酶(luc)报告基因一起,为研究人员开始了解基因表达调控因子提供了首要的工具。1995Dual-Luciferase?报告基因检测系统(DLR)DLR是7b0a8f9c-3a4b-41a1-a7f8-3允许在单个样本中依次检测两个报告基因的试剂。通过允许萤光素酶活性的内部归一化,在提高报告基因检测的可靠性方面取得了关键进展。此外,pGL3报告基因载体系列具有改良后的萤火虫萤光素酶基因,luc+。这个改造一种报告基因以实现性能改进的例子后来被进一步应用到pGL4和luc2报告基因上,通过生物信息学和合成方法,实现了更大的改进。[1]1999ENLITEN?/UltraGlo?重组萤光素酶Promega公司在早期推出的一种重组萤火虫萤光素酶(Enliten)基础上,改造出了一种称为UltraGlo?的热稳定性萤光素酶。UltraGlo?的开发是在各种检测和储藏条件下进行一步法“加样-读数”检测的关键。此后。上海荧光素酶编码基因D-荧光素钾盐试剂ATP作用下的D-荧光素钾盐什么样。
luciferin)的分子结构如右图所示:,在氧气、ATP存在的条件下和荧光素酶发生反应,生成氧化荧光素(oxyluciferin),分子结构如右图所示,并产生长发生光现象。但是该底物荧光素以前大多依赖进口,产品价格昂贵。而且由于该产品容易降解、受潮影响使用效果。所以,需要国产化的方式生产,一方面可以降低成本,一方面可以增强使用效果。作者:科远迪链接:zhuanlan./p/来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。D-luciferin,potassiumsalt荧光素产品说明书发光原理哺乳动物生物发光,一般是将Fireflyluciferase基因(由554个氨基酸构成,约50KD)即荧光素酶基因整合到预期观察的细胞染色体DNA上以表达荧光素酶,培养出能稳定表达荧光素酶的细胞株,当细胞分裂、转移、分化时,荧光素酶也会得到持续稳定的表达。基因、细胞和活题动物都可被荧光素酶基因标记。将标记好的细胞接种到实验动物体内后,当外源(腹腔或静脉注射)给予其底物荧光素(D-luciferin,potassiumsalt,以下均简称荧光素),即可在几分钟内产生长发生光现象。所发的光波长在540-600nm。这种酶在ATP,氧存在的条件下,催化荧光素的氧化反应才可以发光。
故根据荧光反应的情况可以检测样品中的微生物含量。APT荧光检测仪***用于食品、饮用水、餐饮器具等的微生物快速检测。1970年,科学家***次测定了萤火虫荧光素酶的结构;1985年,科学家***克隆了一种萤火虫荧光素酶基因,并在大肠杆菌中表达,从而得到了具有活性的荧光素酶;1986年,科学家们测定了该种萤火虫荧光素酶的基因序列。随后,各种萤火虫荧光素酶基因相继克隆成功,荧光素酶的研究和应用不断发展。目前,荧光素酶发光系统的分析技术已经广泛应用到医学、生命科学、环境科学、微生物学等许多领域。以医学领域为例,**们将荧光素酶基因嵌入到*细胞中,再注入荧光素,使*细胞发光,通过探测荧光,就能监测*细胞的扩散和转移。同理,用这种方法能对致病基因、***免疫机制等进行研究,对某些疾病进行诊断,监测疫苗、药物和治疗方法的效力。D-荧光素钾盐使用浓度怎么样?
SodiumSalt/D荧光素钠盐分子式:NaC11H7N2O3S2·H2O分子量:g/mol纯度:高级纯()应用:1)体外化学发光分析(invitro);2)***成像实验(invivo);3)高灵敏度ATP分析;步骤:Protocol1:InVitroBioluminescentAssays/体外生物发光检测1)用mL蒸馏水溶解gD-荧光素钠盐,配制成100mM的储存液(200×,浓度30mg/ml)。混匀后立即使用或分装后-20℃冻存。2)用组织培养基1∶200稀释储存液,配置工作液(终浓度150μg/mL)。3)去除培养细胞的培养基。4)待图像分析前,向细胞内添加1×荧光素工作液,然后进行图像分析。Protocol2:Invivoanalysis/***成像分析1)用无菌的PBS(w/oMg2+、Ca2+)配制D-荧光素钠盐工作液(15mg/mL),。一旦使用,保持冰冷且避光。D-荧光素(D-Luciferin)是荧光素酶(Luciferase)的常用底物,普遍应用于整个生物技术领域,尤其是体内***成像技术。其作用机制是在ATP和荧光素酶的作用下,荧光素(底物)能够被氧化发光(见下图)。当荧光素过量时,产生的光量子数与荧光素酶的浓度呈正相关性。将携带荧光素酶编码基因(Luc)的质粒转染入细胞后,导入研究动物如大、小鼠体内,之后注入荧光素,通过生物发光成像技术(BLI)来检测光强度变化。D-荧光素钾盐的发射波长是多少?无锡荧光素D-荧光素钾盐哪家好
D-荧光素钾盐荧光素酶和ATP水平分析。徐州萤火虫荧光素酶D-荧光素钾盐生物公司
2-乙磺酸)PIPES磷酸烯醇**酸三(环已胺)盐PEP病毒保存液肝素锂乙二胺四乙酸二钾/EDTA二钾血清分离胶/血液分离胶肝素抗凝剂乙二胺四乙酸三钾/EDTA三钾血液促凝剂高效促凝粉高效硅化剂水溶性硅化剂草酸钾钙离子螫合抗凝剂弱效抗凝剂吖啶酯己二酰阱NSP-DMAE-ADH吖啶酯-T4结合物吖啶酯-T3结合物吖啶磺酰胺盐-N-乙胺基马来酰亚胺吖啶磺酰胺盐-T4结合物吖啶磺酰胺盐-T3结合物生物素-T4结合物化学发光分析试剂及标记物生物素-T3结合物生物素-NHS活性酯吖啶磺酰胺NSP-SA-ADH吖啶酯NSP-DMOAE-NHS吖啶酯NSP-DMOAE-PEG-GT-NHSCy3-NHS酯Cy7-NHS酯5-羧基荧光素-NHS酯6-羧基荧光素-NHS酯5(6)-羧基荧光素-NHS酯6-羧基荧光素D荧光素钠盐D-Luciferin,SodiumSaltD-荧光素钾盐D-Luciferin,PotassiumSaltD-荧光素萤火虫,游离酸D-LuciferinFirefly,freeacid萤火虫荧光素酶fireflyluciferase海肾荧光素酶Renillaluciferase天然腔肠荧光素Coelenterazineh腔肠素hCoelenterazinef腔肠素fCoelenterazineh/腔肠素h腔肠荧光素运输和保存冰袋运输;-20℃干燥避光保存;有效期一年。使用方法1.体外生物发光检测1)用无菌蒸馏水溶解D-荧光素钠盐,配制成30mg/mL的储存液(100-200×),混匀。立即使用。徐州萤火虫荧光素酶D-荧光素钾盐生物公司