注意事项1)本品(fireflyluciferin)和甲虫荧光素(beetleluciferin)、萤光素钾盐只是不同别名,以CAS号115144-35-9为准。2)注射方式、动物类型以及体重等都会影响信号的发射,因此建议每次实验都要做荧光素酶动力学曲线,确定更佳信号平台期和更佳的检测时间。3)如果要进行ATP的检测,尽量避免外源ATP的污染,如操作时戴手套并使用ATP-free的实验耗材,在进行荧光素的溶解时应使用ATP-free无菌水。4)为避免反复冻融,本产品配制成溶液后建议适当分装后-20℃或-80℃保存。为防止氧化,如有条件,可以对储存液充氮气或氩气后保存。5)对于检测灵敏度要求特别高的实验,建议使用新鲜配制的本产品。6)在进行D-荧光素钾盐的溶解时,应使用无钙镁离子的DPBS,因钙镁离子可能会抑制荧光素酶的活性,此外镁离子可能会对荧光素的氧化造成影响,从而影响检测。7)为了您的安全和健康,请穿实验服并戴一次性手套操作。8)本产品只作科研用途!D-荧光素有时候也叫游离酸。盐城荧光素D-荧光素钾盐生物公司
常见的荧光素酶有两种,分别是萤火虫荧光素酶(fireflyluciferase,编码基因是luc)和海肾荧光素酶(Renillaluciferase,编码基因是Rluc),前者的底物是D-Luciferin,后者的底物是Coelenterazine。它们共同的作用原理是在ATP和荧光素酶的催化作用下,底物被氧化发光(不同底物光的颜色和波长不同),当底物过量时,产生的光量子数与荧光素酶的浓度呈正相关性。***成像技术(opticalinvivoimaging)目前主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术,生物发光法是基于荧光素酶能催化底物(D-Luciferin或Coelenterazine)化学发光的原理,将体外能稳定表达荧光素酶的细胞株植入动物体内,与后期注射入体内的底物发生反应,利用光学系统检测光强度,间接反映出细胞数量的变化或细胞的定位。这项技术已被广泛应用于多个领域常用的有**或疾病动物模型的建立,并可用于病毒学研究、siRNA研究、干细胞研究、蛋白质相互作用研究等。以下主要介绍D-Luciferin(D荧光素)的分类:D-Luciferin:有三种,分别是D-Luciferin,SodiumSalt/D荧光素钠盐、D-Luciferin,PotassiumSalt/D-荧光素钾盐和D-LuciferinFirefly,freeacid/D-萤火虫荧光素。苏州专业做D-荧光素钾盐供应商D-荧光素钾盐一般都是使用什么技术。
重组为一个明亮的萤光素酶。这些亚基的亲和力可以和SmBiT肽一样低,从而可以进行蛋白质相互作用的测定;也可以和HiBiT一样高,从而允许自我组装。[1]2017HiBiT?技术基于NanoBiT?系统的研究,我们将与LgBiT具有极强亲和作用的。HiBiT作为一种易于检测且具有高灵敏度的蛋白质标签,具有多种功能,例如当与基于CRIPSR的标签一起使用时,可以创建内源性报告基因模型。[1]2020Lumit?技术随着NanoBiT?技术的发展,人们认识到可以利用该系统通过结合免疫测定的组分检测多种分析物。由此产生的平台(现称为“Lumit”)提供了具有高灵敏度的简化免疫检测法。荧光素酶(英文名称:Luciferase)是自然界中能够产生生物荧光的酶的统称,其中更有代表性的是一种学名为Photinuspyrali'的萤火虫体内的荧光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有荧光素酶的情况下,萤光素与氧气反应的速率非常慢,而钙离子的存在常??梢越徊郊铀俜从Γㄓ爰∪馐账醯那榭鱿嗨疲?。荧光生成反应通常分为以下两步:萤光素+ATP→萤光素化腺苷酸。
luciferyladenylate)+PPi萤光素化腺苷酸+O2→氧荧光素+AMP+光这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有越10%的能量被转化为光,剩余的能量都变为热能而被浪费。分析荧光素或荧光素酶不是特定的分子,而是对于所有能够产生荧光的底物和其对应的酶的统称,虽然它们各不相同。不同的能够控制发光的生物体用不同的荧光素酶来催化不同的发光反应。更为人所知的发光生物是萤火虫,而其所采用不同的荧光素酶与其他发光生物如荧光菇(发光类脐菇,Omphalotusoleariu')或许多海洋生物都不相同。在萤火虫中,发光反应所需的氧气是从被称为腹部气管(abdominaltrachea)的管道中输入。一些生物,如叩头虫,含有多种不同的荧光素酶,能够催化同一荧光素底物,而发出不同颜色的荧光。萤火虫有2000多种,而叩甲总科(包括萤火虫、叩头虫和相关昆虫)则有更多,因此它们的荧光素酶对于分子系统学研究很有用。目前研究得更透彻的荧光素酶是来自Photinini族萤火虫中的北美萤火虫(Photinuspyrali')。应用荧光素酶可以在实验室中用基因工程的方法生成,并被用于多种不同的实验。D-荧光素也常用于身体的外部研究。
故根据荧光反应的情况可以检测样品中的微生物含量。APT荧光检测仪***用于食品、饮用水、餐饮器具等的微生物快速检测。1970年,科学家***次测定了萤火虫荧光素酶的结构;1985年,科学家***克隆了一种萤火虫荧光素酶基因,并在大肠杆菌中表达,从而得到了具有活性的荧光素酶;1986年,科学家们测定了该种萤火虫荧光素酶的基因序列。随后,各种萤火虫荧光素酶基因相继克隆成功,荧光素酶的研究和应用不断发展。目前,荧光素酶发光系统的分析技术已经广泛应用到医学、生命科学、环境科学、微生物学等许多领域。以医学领域为例,**们将荧光素酶基因嵌入到*细胞中,再注入荧光素,使*细胞发光,通过探测荧光,就能监测*细胞的扩散和转移。同理,用这种方法能对致病基因、***免疫机制等进行研究,对某些疾病进行诊断,监测疫苗、药物和治疗方法的效力。D-荧光素钾盐母液保存条件是-20℃避光。宿迁体外研究D-荧光素钾盐
D-荧光素钾盐荧光素酶和ATP水平分析。盐城荧光素D-荧光素钾盐生物公司
D-荧光素钾盐是一种化学品。中文别名:(S)-4,5-二氢-2-(6-羟基苯并噻唑-2-基)噻唑-4-甲酸钾盐英文别名:(S)-4,5-Dihydro-2-(6-hydroxybenzothiazol-2-yl)thiazole-4-carboxylicacidpotassiumsalt产品描述D-荧光素(D-Luciferin)是荧光素酶(Luciferase)的常用底物,普遍应用于整个生物技术领域,特别是体内活题成像技术。其作用机制是在ATP和荧光素酶的作用下,荧光素底物能够被氧化发光。当荧光素过量时,产生的光量子数与荧光素酶的浓度呈正相关性(见下图)。将携带荧光素酶编码基因(Luc)的慢病毒转染入细胞后构建稳定表达细胞株,构建原位肿大的瘤模型,之后注入荧光素底物,通过IVIS系统来检测光强度变化,从而实时监测疾病发展状态或进行药物药效评价等。也可以利用ATP对此反应体系的影响,根据生物发光强度的变化来指示能量或生命体征。注:在抗肿大的瘤药物药效评价试验中,由于生物自发光检测需要根据荧光素表达标定肿大的瘤大小,受肿大的瘤生长所发生的肿大的瘤内部坏死影响,生物自发光并不能很覆盖面广的评价肿大的瘤生长,在抗肿大的瘤药效评价有较高要求的实验中,建议使用小动物核磁成像系统检测肿大的瘤生长。D-荧光素也常用于体外研究。盐城荧光素D-荧光素钾盐生物公司