近年来,随着世界性的能源资源紧缺和全球性环境问题的日益严重,各国已在紧张的研究相关技术理论或制定相应政策应对、缓解该问题。基于低品位热能利用的有机朗肯循环(OrganicRankineCycle,ORC)是降低能源燃料消耗、节能减排的有效措施和手段,成为世界各国学者、科研机构、高等院校研究的重点课题,采用新型的冷电、热电或冷热电联供循环是提高低品位热能利用ORC系统效率和优化其性能的有效途径之一。应用于ORC系统的有机工质具有一定的GWP值、ODP值等环境潜值,都将对环境产生一定的影响,在其生产和运输过程中可能对环境造成一定的污染,ORC系统运行过程中工质泄漏也必将加剧全球变暖、臭氧层的破坏。ORC余热发电技术具有明显的社会和经济效益。ORC低温发电机组订做费用
ORC的有优点:1.采用低温有机朗肯循环冷能发电装置具有操作简便、灵活性高、占地小、易于维护的优点,虽发电效率较低,但投资小,接收站可操作性强,具备良好的工程化推广价值。2.海水入口温度对冷能发电装置影响明显,在其他条件均相同的情况下,海水入口温度为重现期2a极端更高水温29.9℃时,与贫气海水均温(18.8℃)工况相比,装置发电效率提高了20%。因此,我国南方地区LNG接收站尤其适合采用低温有机朗肯循环冷能发电系统。3.在其他条件均相同的情况下,富气情况下的发电效率较贫气情况降低约25%。河南高效磁浮涡轮ORC发电机有机朗肯循环低温余热发电技术为有效解决大量低温余热资源回收问题提供了选择。
ORC应用领域及经济性分析:生物质发电,生物质在农业、工业领域如木材厂、农业废弃物中普遍存在。但是由于实现清洁生物质能燃烧的投资比传统的燃料投入更大,所以对于小型生物质发电厂,其发电成本并没有太大竞争力,可以通过热电联产的方式来实现投资盈利。因此,为了实现高效率转换,生物质热电联产电厂通常是由热需求,而不是电力需求来驱动的。通常,一个典型的生物质热电厂的装机规模在发电功率1~2MW左右,同时可提供6~10MW的热功率。
在能源危机、气候变化的时代背景下,有机朗肯循环(ORC)作为一种低温余热资源利用的有效途径,得到普遍的研究及工业应用。混合工质作为该领域的研究热点,在能否提高ORC循环性能等问题上观点截然相悖。本文从工作原理、循环性能评价、工质筛选和工艺优化等方面对混合工质ORC展开分析及研究,以探究争议的主要及解决途径。研究结果表明:混合工质ORC的争议主要源于缺乏统一的优化及评价基准,普遍采用的以尽可能大的相变温度滑移为约束条件,有可能降低混合工质性能;混合工质的组分调控特性表现出巨大潜力,结合组分调控的工艺设计、相变温度滑移的定量优化、实验及中试是未来应重点关注的研究方向。国内ORC低温余热发电技术发展空间很大,仍有多项关键技术需要解决。
钢铁、化工、石油开采、印染、纺织等行业存在大量热水形式的余热资源,通常采用循环冷却塔进行降温处理,泵与风机消耗大量宝贵的电能并伴有大量水蒸发。钢铁高炉冲渣水:以2500m3高炉为例,冲渣水量3600t/h,水温85℃以上,可装机4000kw,需求ORC机组20台,全国高炉1024座,总需求ORC机组量约2万台,可装机负荷400万kW。在化工、石油开采中,高于100℃的热水更多。初步估算是钢铁行业的两倍,即至少需求ORC机组4万台,可装机负荷800万kW。ORC余热发电技术提高能源的利用效率。高效磁浮涡轮ORC低温发电机组生产商家
有机朗肯循环发电,可用于太阳能发电。ORC低温发电机组订做费用
工作运行参数对朗肯循环效率的影响:在朗肯循环中,表征朗肯循环特性的循环特性参数分别为从蒸发器输出的过热蒸汽的状态所确定的蒸发压力和蒸发温度以及冷凝器中冷凝状态所确定的冷凝压力。在蒸发与冷凝压力一定时,提高工质的蒸发器出口温度可使系统热效率增大。这是由于当蒸发温度由1提高到1点时,平均吸热温度随之提高,使得循环温差增大,从而提高循环热效率。另外,循环工质在膨胀终点的干度随着蒸发温度的提高而增大,而干度的增大有利于提高膨胀机械的性能,并延长其使用寿命。ORC低温发电机组订做费用