此外,还有双端面干气密封结构,它适用于那些不允许工艺气泄漏到大气中,但允许阻封气(如氮气)进入机内的工况。这种结构的特点和适用场景进行了解。双端面密封的设计原理是将两套单端面密封面对面布置,有时还会采用两个动环。这种结构特别适用于没有火炬条件,但允许少量阻封气如氮气进入工艺介质的情况。通过在两组密封之间通入氮气作为阻塞气体,可以形成一个性能可靠的阻塞密封系统。关键在于控制氮气的压力,使其始终维持在比工艺气体压力高0.2~0.3MPa的水平,从而确保密封气泄漏的方向始终朝向工艺气和大气,进而防止工艺气向大气泄漏。干气密封的结构设计通常采用有限元分析,确保在高负荷条件下仍能保持良好的密封性能。甘肃波纹管干气密封
干气密封在压缩机内的具体的位置:一台典型的透平压缩机包含两个介于轴承之间的集装式干气密封干气密封和普通平衡型机械密封相似,也由静环和动环组成。其中,静环由弹簧加载,并靠O型圈辅助密封。但是与液体普通平衡型机械密封的区别在于:干气密封动环端面开有气体槽,气体槽深度只有几微米,端面间必须有洁净的气体,以保证两个端面间形成一个稳定的气膜使得密封端面完全分离。气膜厚度一般为几微米,这个稳定的气膜可以使密封端面保持一定的密封间隙。间隙如果太大,密封效果会变差。间隙如果太小,则会使密封面发生接触。因而干气密封的摩擦热不能散失,会很快引起密封端面的变形,从而使密封失效。常见的两种槽型是:双向的(U型)和单向的(V型)槽型。气体介质就是通过密封间隙时靠节流和阻塞的作用而被减压,从而实现气体介质的密封,几微米的密封间隙会使气体泄漏率保持较小。广西双端面干气密封供应在安装干气密封时,需要确保所有部件均符合设计要求,以保证较佳的密封效果。
随着转子转动,气体被向内泵送到螺旋槽的根部,根部以外的一段无槽区称为密封坝。密封坝对气体流动产生阻力作用,增加气体膜压力。该密封坝的内侧还有一系列的反向螺旋槽,这些反向螺旋槽起着反向泵送、改善配合表面压力分布的作用,从而加大开启静环与动环组件间气隙的能力。反向螺旋槽的内侧还有一段密封坝,对气体流动产生阻力作用,增加气体膜压力。配合表面间的压力使静环表面与动环组件脱离,保持一个很小的间隙,一般为3微米左右。当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。
干气密封工作原理:一般来讲,典型的干气密封技术,包含了静环、动环(旋转环)、副密封0形圈、静密封、弹簧和弹簧座等。静环位于弹簧座内,用副密封0形圈密封。弹簧在密封无负荷状态下使静环与固定在轴上动环(旋转环)配合。这类密封与机械密封的区别在于,它是一种气膜润滑的流体动、静压相结合的非接触式机械密封。动环与静环配合表面具有很高的平面度和光洁度,通常在动环表面上加工有一系列的特种槽。随着转动,气体被向内泵送到槽的根部,根部以外的无槽区称为密封坝。密封坝对气体流动产生阻力作用,增加气体膜压力。配合表面之间产生的压力,使静环表面与动环脱离,保持一个很小的间隙。当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。在有效确保动力平衡的基础上,密封中产生的作用力状况。通过实施智能管理系统,可以实时监测干气密闭状态,实现预测性维护,大幅降低停机时间。
在某些特殊工况下,如不允许工艺介质泄漏到大气中,同时也不允许阻封气进入工艺介质,我们可以考虑在串联式干气密封的两级之间增加迷宫密封。这种设计对于易燃、易爆或危险性大的介质气体,如H2压缩机、H2S含量较高的天然气压缩机、乙烯和丙烯压缩机等,可以实现完全无外漏的密封效果。在这种结构中,主密封气除了使用工艺气本身外,还需引入另一路氮气作为第二级密封的使用气体。一级密封泄漏的工艺气体将被氮气完全引入火炬进行燃烧处理,而二级密封漏入大气的则是氮气。这样一来,在主密封失效时,第二级密封能够发挥辅助安全作用。使用先进仿真软件进行设计,可以优化干气密闭结构,提高其适应不同工况的能力。深圳泵用干气密封参考价
此技术不仅适用于泵,还可广泛应用于压缩机、风机等多种设备中,提高了设备可靠性。甘肃波纹管干气密封
工作原理:干气密封环的密封面如图2所示。泵轴旋转带动静环、动环进行相对旋转运动时,密封面动压槽内会吸入密封气体,通过密封堰的节流作用,密封面内的气体会被压缩,使得气体压力升高,密封面在气体压力作用下被推开,达到非接触状态。此时密封面内气体压力与工作介质作用力、弹簧力形成的闭合力达到平衡,因此,密封气体在两个密封面间形成一层稳定的薄气膜。通过理论研究与实践证明,此气膜厚度一般在3 μm左右,变化微小,具有良好的气膜刚度,能够保证干气密封运转可靠稳定。甘肃波纹管干气密封