除了枝状分子之外,环状单分子树脂近年来也得到了迅速发展。这些单分子树脂的环状结构降低了分子的柔性,从而通常具有较高的玻璃化转变温度和热化学稳定性。由于构象较多,此类分子也难以结晶,往往具有很好的成膜性。起初将杯芳烃应用于光刻的是东京科技大学的Ueda课题组,2002年起,他们报道了具有间苯二酚结构的杯芳烃在365nm光刻中的应用。2007年,瑞士光源的Solak等利用对氯甲氧基杯芳烃获得了线宽12.5nm、占空比1∶1的密集线条,但由于为非化学放大光刻胶,曝光机理为分子结构被破坏,灵敏度较差,为PMMA的1/5。光刻胶所属的微电子化学品是电子行业与化工行业交叉的领域,是典型的技术密集行业。昆山光刻胶单体
感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。经适当的溶剂处理,溶去可溶性部分,得到所需图像(见图光致抗蚀剂成像制版过程)。光刻胶用于印刷电路和集成电路的制造以及印刷制版等过程。光刻胶的技术复杂,品种较多。根据其化学反应机理和显影原理,可分负性胶和正性胶两类。光照后形成不可溶物质的是负性胶;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正性胶。利用这种性能,将光刻胶作涂层,就能在硅片表面刻蚀所需的电路图形?;谏饪探合杂霸赑CB行业:主要使用的光刻胶有干膜光刻胶、湿膜光刻胶、感光阻焊油墨等。
除了锡氧纳米簇之外,近年来以锌元素为中心的纳米簇也用于了EUV光刻。第一种锌氧纳米簇光刻胶由法国上阿尔萨斯大学的Soppera课题组在2016年报道。曝光后,锌氧纳米簇发生交联聚集,在曝光区域形成金属-氧-金属网状结构,从而实现负性光刻。随后,Xu等借鉴了这一结构,制备了3-甲基苯基修饰的Zn-mTA,将其用作EUV光刻胶。光致产酸剂产生的酸引发Zn-mTA纳米簇的配体交换,从而改变纳米簇表面的电荷分布,减弱了其在非极性溶剂中的溶解性,实现负性光刻。Zn-mTA呈现出良好的溶解性、成膜均一性,可以在47mJ·cm?2的剂量下获得15nm的光刻线条。由于Zn-mTA具有更小的尺寸和更窄的尺寸分布,因此可以获得比金属氧化物纳米颗粒光刻胶更高的分辨率。
研究人员将金属纳米簇用于EUV光刻时,制备了几种结构为[(RSn)12O14(OH)6]X2(其中R为有机配体,X为羧酸平衡阴离子)的锡氧纳米簇。锡氧纳米簇对EUV光的吸收比有机光刻胶吸收要强,因此可以显著提高光刻胶的灵敏度;此外纳米簇的体积也小于金属氧化物的纳米颗粒,可以获得更高的分辨率、更低的粗糙度。光照下,锡-碳键解离,形成Sn自由基,Sn自由基引发交联反应使纳米簇聚集,使其无法溶解于显影液,从而实现负性光刻。通过改变金属簇的有基配体和平衡阴离子,他们发现光刻灵敏度只与配体的键能相关,而与阴离子的键能无关。光照会同时产生Sn自由基和配体自由基,Sn相对稳定,因此,配体自由基的稳定性影响了反应的进行。此外,尽管阴离子不参与反应,但由于位阻作用,它们依然可以影响金属簇的聚集。这种光刻胶可以获得分辨率为18nm的光刻图形,但灵敏度很差,曝光剂量高达350mJ·cm?2。彩色光刻胶及黑色光刻胶市场也呈现日韩企业主导的格局,国内企业有雅克科技、飞凯材料、彤程新材等。
与EUV光源相比,UV光源更容易实现较高的功率;但UV曝光不能满足分辨线条的形成条件。因此PSCAR实际上是利用EUV曝光形成图案,再用UV曝光增加光反应的程度,从而实现提高EUV曝光灵敏度的效果。在起初的PSCAR体系基础之上,Tagawa课题组还开展了一系列相关研究,并通过在体系中引入对EUV光敏感的光可分解碱,开发出了PSCAR1.5,引入对UV光敏感的光可分解碱,开发出了PSCAR2.0。光可分解碱的引入可以减少酸扩散,使PSCAR光刻胶体系的对比度提高,粗糙度降低,也进一步提高了光刻胶的灵敏度。光刻胶的组成部分包括:光引发剂(包括光增感剂、光致产酸剂)、光刻胶树脂、单体、溶剂和其他助剂。上海黑色光刻胶光致抗蚀剂
碳酸甲酯型光刻胶:这种类型的光刻胶在制造高分辨率电路元件方面非常有用。昆山光刻胶单体
高分子化合物是很早被应用为光刻胶的材料。中文“光刻胶”的“胶”字起初对应于“橡胶”,而至今英文中也常将光刻胶主体材料称为“resin”(树脂),其背后的缘由可见一斑。按照反应机理,高分子光刻胶基本可以分为两类:化学放大光刻胶和非化学放大光刻胶?;Х糯蠡?span>起初由美国IBM公司于1985年提出,后来被广泛应用于KrF及更好的光刻工艺中?;Х糯蠊饪探旱墓饷艏廖庵虏峒?,主体材料中具有在酸作用下可以离去的基团,如叔丁氧羰基酯、金刚烷酯等。在光照下,光致产酸剂生成一分子的酸,使一个离去基团发生分解反应,原本的酯键变成羟基(通常是酚羟基),同时又产生一分子的酸;新产生的酸可以促使另一个离去基团发生反应;如此往复,形成链式反应。昆山光刻胶单体