KrF光刻时期,与ESCAP同期发展起来的还有具有低活化能的酸致脱保护基团的光刻胶,业界通称低活化能胶或低温胶。与ESCAP相比,低活化能胶无需高温后烘,曝光能量宽裕度较高,起初由日本的和光公司和信越公司开发,1993年,IBM公司的Lee等也研发了相同机理的光刻胶KRS系列,商品化版本由日本的JSR公司生产。其结构通常为缩醛基团部分保护的对羟基苯乙烯,反应机理如图12所示。2004年,IBM公司的Wallraff等利用电子束光刻比较了KRS光刻胶和ESCAP在50nm线宽以下的光刻性能,预示了其在EUV光刻中应用的可能性。光刻胶的技术壁垒包括配方技术,质量控制技术和原材料技术。半导体光刻胶树脂
20世纪七八十年代,我国光刻胶研发水平一直与国外持平。1977年,化学研究所曾出版了我国一部有关光刻胶的专著《光致抗蚀剂:光刻胶》。但随后的1990~2010年,由于缺乏芯片产业的牵引,我国光刻胶研发处于停滞状态。直到2010年后,我国才又开始重新组建光刻胶研发队伍。目前我国的EUV光刻胶主要集中在单分子树脂型和有机-无机杂化型,暂无传统高分子EUV光刻胶的相关工作见诸报道。我国开展EUV光刻胶研究的主要有化学研究所杨国强课题组和理化技术研究所李嫕课题组。苏州化学放大型光刻胶光致抗蚀剂按照化学结构分类:光刻胶可以分为光聚合型,光分解型,光交联型和化学放大型。
2014年,Gonsalves课题组在侧基连接硫鎓盐的高分子光刻胶基础之上,制备了一种侧基含有二茂铁基团高分子光刻胶。其反应机理与不含二茂铁的光刻胶类似,但二茂铁的引入增强了光刻胶的热稳定性和灵敏度,可实现25nm线宽的曝光。2015年,课题组报道了一系列钯和铂的配合物,用于正性EUV曝光。配合物中包括极性较大的草酸根配体,也有极性较小的1,1-双(二苯基膦)甲烷或1,2-二(二苯基膦)乙烷配体。EUV曝光后,草酸根分解形成二氧化碳或一氧化碳,配体只剩下低极性部分,从而可以用低极性的显影液洗脱;未曝光区域由于草酸根的存在,无法溶于显影液,实现正性曝光。这一系列配合物中,灵敏度较高的化合物为1,2-二(二苯基膦)乙烷配草酸钯,可以在50mJ·cm?2的剂量下得到30nm的线宽。
起初应用于 EUV 光刻的光刻胶为聚甲基丙烯酸甲酯(PMMA)。PMMA曾广泛应用于193nm光刻和电子束光刻工艺中,前者为EUV的前代技术,后者的反应机理与EUV光刻有较多的相似点。PMMA具有较高的透光性和成膜性、较好的黏附性,通常应用为正性光刻胶。在光子的作用下,PMMA发生主链碳-碳键或侧基酯键的断裂,形成小分子化合物于显影液。早在1974年,Thompson等就利用PMMA作为光刻胶,研究了其EUV光刻性能。随后,PMMA成为了重要的工具光刻胶。按显示效果分类:光刻胶可分为正性光刻胶和负性光刻胶。
由于早期制约EUV光刻发展的技术瓶颈之一是光源功率太小,因此,在不降低其他光刻性能的前提下提高EUV光刻胶的灵敏度一直是科研人员的工作重点。为了解决这一问题,2013年,大阪大学的Tagawa等提出了光敏化化学放大光刻胶(PSCAR?)。与其他EUV化学放大光刻胶不同的是,PSCAR体系除了需在掩模下进行产生图案的EUV曝光,还要在EUV曝光之后进行UV整片曝光。PSCAR体系中除了有主体材料、光致产酸剂,还包括光敏剂前体。这是一种模型光敏剂前体的结构,它本身对UV光没有吸收,但在酸性条件下可以转化为光敏剂,对UV光有吸收。半导体光刻胶的涂敷方法主要是旋转涂胶法,具体可以分为静态旋转法和动态喷洒法。江浙沪光交联型光刻胶树脂
经过多年技术积累,国内已形成一定光刻胶用电子化学品产能,国内公司市场份额逐步提升,国产替代正在进行。半导体光刻胶树脂
1983年,Joy以PMMA作为模型化合物,利用蒙特卡罗方法计算了EUV光刻的空间分辨率。1989年,Kurihara课题组利用PMMA评测了光学器件,并测试了EUV光对PMMA膜的透过性。1990年,Windt课题组利用14nmEUV光对PMMA光刻胶进行光刻,获得了50nm的线条。2001~2004年,Bokor课题组利用PMMA光刻胶、Shipley公司早期工具光刻胶EUV-2D先后评测了其自制的EUV光刻设备和美国光源的EUV光刻线站的性能。可见,在EUV光技术发展早期,PMMA光刻胶对EUV光刻设备的调试、测试起了重要作用。但是PMMA的曝光机理不涉及化学放大过程,因此其灵敏度较差,而早期制约EUV光刻技术发展的瓶颈问题之一便是曝光光源功率很小,因而以PMMA为主的非化学放大型光刻胶一度被化学放大型光刻胶取代。半导体光刻胶树脂