光刻胶(Photoresist)又称光致抗蚀剂,是指通过紫外光、电子束、离子束、X射线等的照射或辐射,其溶解度发生变化的耐蚀剂刻薄膜材料。由感光树脂、增感剂和溶剂3种主要成分组成的对光敏感的混合液体。在光刻工艺过程中,用作抗腐蚀涂层材料。半导体材料在表面加工时,若采用适当的有选择性的光刻胶,可在表面上得到所需的图像。光刻胶按其形成的图像分类有正性、负性两大类。在光刻胶工艺过程中,涂层曝光、显影后,曝光部分被溶解,未曝光部分留下来,该涂层材料为正性光刻胶。如果曝光部分被保留下来,而未曝光被溶解,该涂层材料为负性光刻胶。按曝光光源和辐射源的不同,又分为紫外光刻胶(包括紫外正、负性光刻胶)、深紫外光刻胶、X-射线胶、电子束胶、离子束胶等。光刻胶主要应用于显示面板、集成电路和半导体分立器件等细微图形加工作业 。光刻胶生产技术较为复杂,品种规格较多,在电子工业集成电路的制造中,对所使用光刻胶有严格的要求。按照化学结构分类:光刻胶可以分为光聚合型,光分解型,光交联型和化学放大型。江浙沪PCB光刻胶溶剂
导体光刻胶的涂敷方法主要是旋转涂胶法,具体可以分为静态旋转法和动态喷洒法。静态旋转法:首先把光刻胶通过滴胶头堆积在硅片的中心,然后低速旋转使得光刻胶铺开,再以高速旋转甩掉多余的光刻胶。在高速旋转的过程中,光刻胶中的溶剂会挥发一部分。静态涂胶法中的光刻胶堆积量非常关键,量少了会导致光刻胶不能充分覆盖硅片,量大了会导致光刻胶在硅片边缘堆积甚至流到硅片的背面,影响工艺质量。动态喷洒法:随着硅片尺寸越来越大,静态涂胶已经不能满足新型的硅片加工需求。相对静态旋转法而言,动态喷洒法在光刻胶对硅片进行浇注的时刻就开始以低速旋转帮助光刻胶进行**初的扩散。这种方法可以用较少量的光刻胶形成更均匀的光刻胶铺展,以高速旋转形成满足厚薄与均匀度要求的光刻胶膜。LCD触摸屏用光刻胶光致抗蚀剂从化学组成来看,金属氧化物光刻胶主要为稀土和过渡金属有机化合物。
g-line与i-line光刻胶均使用线性酚醛成分作为树脂主体,重氮萘醌成分(DQN 体系)作为感光剂。未经曝光的DQN成分作为抑制剂,可以十倍或者更大的倍数降低光刻胶在显影液中的溶解速度。曝光后,重氮萘醌(DQN)基团转变为烯酮,与水接触时,进一步转变为茚羟酸,从而得以在曝光区被稀碱水显影时除去。由此,曝光过的光刻胶会溶解于显影液而被去除,而未曝光的光刻胶部分则得以保留。虽然g-line光刻胶和i-line 光刻胶使用的成分类似,但是其树脂和感光剂在微观结构上均有变化,因而具有不同的分辨率。G-line光刻胶适用于0.5um(500nm)以上尺寸的集成电路制作,而i-line光刻胶使用于0.35um(350nm至0.5um(500nm)尺寸的集成电路制作。
美国能源部布鲁克海文国家实验室的研究人员采用原子层沉积(ALD)系统,将有机聚合物聚甲基丙烯酸甲酯(PMMA)与氧化铝结合起来,创造了杂化有机-无机光刻胶。他们在将涂有PMMA薄膜的衬底放到ALD反应室中之后,引入了铝前驱物蒸汽。这个蒸汽通过PMMA基质内部的微小分子孔扩散,与聚合物链内部的化学物质结合到一起。然后,他们引入了另一种前驱物(例如水),与前驱物反应形成PMMA基体内部的氧化铝。该杂化光刻胶的蚀刻选择比远远高于ZEP(一种昂贵的光刻胶)和二氧化硅。光刻胶按应用领域分类,可分为 PCB 光刻胶、显示面板光刻胶、半导体光刻胶及其他光刻胶。
受制于国内光刻胶技术发展水平,目前我国前沿光刻胶的自给率仍然保持较低水平。尽管国内光刻胶市场保持良好的增长趋势,但以KrF、ArF光刻胶为主的半导体光刻胶领域国内市场份额仍然较小,前沿光刻胶市场长期为国外巨头所垄断。从技术水平来看,目前中国本土光刻胶的整体技术水平与国际先进水平存在明显差距,且主要集中在技术含量较低的PCB光刻胶领域,而在半导体光刻胶和LCD光刻胶方面自给率较低。具体而言,半导体光刻胶中g线/i线光刻胶国产化率为10%,而ArF/KrF光刻胶的国产化率为1%,对于前沿的EUV光刻胶目前仍处于研发阶段。有机-无机杂化光刻胶被认为是实现10nm以下工业化模式的理想材料。普陀LCD触摸屏用光刻胶集成电路材料
聚合度越小,发生微相分离的尺寸越小,对应的光刻图形越小。江浙沪PCB光刻胶溶剂
中国半导体光刻胶市场规模增速超过全球。随着半导体制程节点不断缩小,光刻工艺对光刻胶要求越来越高,需求量也越来越大。据智研咨询数据,2018年全球半导体用光刻胶市场规模约13亿美元,年复合增速为5.4%,预计未来5年年均增速约8%-10%;中国半导体用光刻胶市场规模约23亿元人民币,年复合增速为9.8%,预计未来5年年均增速约10%。以前,光刻胶主要依赖进口,随着科技的逐渐发展,国产化光刻胶趋势越来越明显,相信国内光刻胶技术会越来越成熟,光刻胶国产化是必然趋势。江浙沪PCB光刻胶溶剂