光刻胶属于半导体八大重要材料之一,根据全球半导体行业协会(SEMI)近期数据,光刻胶在半导体晶圆制造材料价值占比5%,光刻胶辅助材料占比7%,二者合计占比12%,光刻胶及辅助材料是继硅片、电子特气和光掩模之后的第四大半导体材料。光刻胶又称光致抗蚀剂,是指通过紫外光、电子束、离子束、X射线等照射或辐射,其溶解度发生变化的耐蚀剂刻薄膜材料,目前被用于光电信息产业的微细图形线路加工制作环节。光刻胶由增感剂(光引发剂)、感光树脂(聚合剂)、溶剂与助剂构成。聚合度越小,发生微相分离的尺寸越小,对应的光刻图形越小。浙江光分解型光刻胶印刷电路板
导体光刻胶的涂敷方法主要是旋转涂胶法,具体可以分为静态旋转法和动态喷洒法。静态旋转法:首先把光刻胶通过滴胶头堆积在硅片的中心,然后低速旋转使得光刻胶铺开,再以高速旋转甩掉多余的光刻胶。在高速旋转的过程中,光刻胶中的溶剂会挥发一部分。静态涂胶法中的光刻胶堆积量非常关键,量少了会导致光刻胶不能充分覆盖硅片,量大了会导致光刻胶在硅片边缘堆积甚至流到硅片的背面,影响工艺质量。动态喷洒法:随着硅片尺寸越来越大,静态涂胶已经不能满足新型的硅片加工需求。相对静态旋转法而言,动态喷洒法在光刻胶对硅片进行浇注的时刻就开始以低速旋转帮助光刻胶进行**初的扩散。这种方法可以用较少量的光刻胶形成更均匀的光刻胶铺展,以高速旋转形成满足厚薄与均匀度要求的光刻胶膜。江苏g线光刻胶集成电路材料光刻胶行业的上下游合作处于互相依存的关系,市场新进入者很难与现有企业竞争,签约新客户的难度高。
EUV(极紫外光)光刻技术是20年来光刻领域的进展。由于目前可供利用的光学材料无法很好支持波长13nm以下的辐射的反射和透射,因此 EUV 光刻技术使用波长为13.5nm的紫外光作为光刻光源。EUV(极紫外光)光刻技术将半导体制程技术在10nm以下的区域继续推进。在 EUV 光刻工艺的 13.5nm 波长尺度上,量子的不确定性效应开始显现,为相应光源,光罩和光刻胶的设计和使用带来了前所未有的挑战。目前 EUV 光刻机只有荷兰 ASML 有能力制造,许多相应的技术细节尚不为外界所知。在即将到来的 EUV 光刻时代,业界预期已经流行长达 20 年之久的 KrF、ArF 光刻胶技术或将迎来技术变革。
随着IC集成度的提高,世界集成电路的制程工艺水平按已由微米级、亚微米级、深亚微米级进入到纳米级阶段。集成电路线宽不断缩小的趋势,对包括光刻在内的半导体制程工艺提出了新的挑战。在半导体制程的光刻工艺中,集成电路线宽的特征尺寸可以由如右所示的瑞利公式确定:CD=k1*λ/NA。CD (Critical Dimension)表示集成电路制程中的特征尺寸;k1是瑞利常数,是光刻系统中工艺和材料的一个相关系数;λ是曝光波长,而NA(Numerical Aperture)则是指光刻机的孔径数值。因此,光刻机需要通过降低瑞利常数和曝光波长,增大孔径尺寸来制造具有更小特征尺寸的集成电路。其中降低曝光波长与光刻机使用的光源以及光刻胶材料高度相关。光刻胶按应用领域分类,可分为 PCB 光刻胶、显示面板光刻胶、半导体光刻胶及其他光刻胶。
光刻胶又称光致抗蚀剂,是一种对光敏感的混合液体。其组成部分包括:光引发剂(包括光增感剂、光致产酸剂)、光刻胶树脂、单体、溶剂和其他助剂。光刻胶可以通过光化学反应,经曝光、显影等光刻工序将所需要的微细图形从光罩(掩模版)转移到待加工基片上。依据使用场景,这里的待加工基片可以是集成电路材料,显示面板材料或者印刷电路板。据第三方机构智研咨询统计,2019年全球光刻胶市场规模预计近90亿美元,自 2010年至今CAGR约5.4%。预计该市场未来3年仍将以年均5%的速度增长,至2022年全球光刻胶市场规模将超过100亿美元。我国光刻胶行业起步较晚,生产能力主要集中在 PCB 光刻胶、TN/STN-LCD 光刻胶等中低端产品。浙江i线光刻胶
光刻胶的国产化公关正在展开,在面板屏显光刻胶领域,中国已经出现了一批有竞争力的本土企业。浙江光分解型光刻胶印刷电路板
伴随全球半导体产业东移,加上我国持续增长的下游需求和政策支持力度。同时,国内晶圆厂进入投产高峰期,由于半导体光刻胶与下游晶圆厂具有伴生性特点,国内光刻胶厂商将直接受益于晶圆厂制造产能的大幅扩张。当前我国光刻胶与全球先进水平有近40年的差距,半导体国产化的大趋势下,国内企业有望逐步突破与国内集成电路制造工艺相匹配的光刻胶,所以必须要对光刻胶足够的重视,不断向日本和欧美等发达国家学习,努力开发出性能优异的国产光刻胶,使我国在未来的市场中占据一席之地。浙江光分解型光刻胶印刷电路板