随着科学技术的发展,生命科学开始向定量科学方向发展。大部分实验的研究重点已经变成生物大分子,特别是核酸和蛋白质的结构及其相关功能的关系;因为AFM的工作范围很宽,可以在自然状态(空气或者液体)下对生物医学样品直接进行成像,分辨率也很高。因此,AFM已成为研究生物医学样品和生物大分子的重要工具之一。AFM应用主要包括三个方面:生物细胞的表面形态观测;生物大分子的结构及其他性质的观测研究;生物分子之间力谱曲线的观测。在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。郑州原子力显微镜测试联系方式
原子力显微镜(AtomicForceMicroscope,AFM)、一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面形貌结构信息及表面粗糙度信息;黑龙江原子力显微镜测试技术将一对微弱力极端敏感的微悬臂一端固定;
DNA和蛋白质分子的特定相互作用在分子生物学中起着关键作用。蛋白质与DNA结合的精确位点图谱和不同细胞状态下结合位点的测定对于了解复杂细胞体系的功能与机理,特别是基因表达的控制都十分关键。AFM作为一种高度分辨达0。1nm,宽度分辨率为2nm左右的表面分析技术,已用于表征各类DNA-蛋白质的复合物。低湿度大气条件下,Rees等利用AFM在接触模式下考察了λ2PL启动子在启动和关闭转录过程中对DNA链弯曲程度的影响。此外,这个小组还研究了另外一种λ2转录因子,Cro-蛋白对DNA弯曲的影响。为了研究Jun蛋白的结合是否会引起DNA链的弯曲,Becker等利用AFM研究了包含一个AP21结合位点的线性化质粒DNA与Jun蛋白的复合物。Aizawa小组对DNA蛋白激酶Ku亚结构域和双链DNA断裂的相关性进行了研究。Kasas等研究了大肠杆菌RNA聚合酶(RNAP)转录过程中的动态酶活性。他们的方法是在Zn2+存在的条件下,RNAP能够松散或紧密地与DNA模板进行结合,通过AFM成像了解其动态过程。
在AFM 观察包裹有紫膜的噬菌调理素蛋白(BR) 的研究中,AFM 仪器的改进,检测技术的提高和制样技术的完善得到了集中的体现。在细胞中,分子马达可以将化学能转变为机械运动,防止因为布朗运动导致的细胞中具有方向性的活动出现错误,这些活动包括:肌浆球蛋白,运动蛋白,动力蛋白,螺旋酶,DNA 聚合酶和RNA 聚合酶等分子马达蛋白的共同特点是沿着一条线性轨道执行一些与生命活动息息相关的功能,比如肌肉的收缩,细胞的分化过程中染色体的隔离,不同细胞间的细胞器的置换以及基因信息的解码和复制等。由于分子马达本身的微型化,它们容易受更高的热能和大的波动的影响,了解马达分子如何正常有序工作就成为一项具有挑战性的任务。利用AFM,人们已经知道了肌动蛋白结合蛋白的结构信息和细胞运动过程中肌动蛋白骨架调控功能。位置检测部分原子力显微镜在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后;
随着科学技术的发展,生命科学开始向定量科学方向发展;大部分实验的研究重点已经变成生物大分子,特别是核酸和蛋白质的结构及其相关功能的关系。因为AFM的工作范围很宽,可以在自然状态(空气或者液体)下对生物医学样品直接进行成像,分辨率也很高。因此,AFM已成为研究生物医学样品和生物大分子的重要工具之一。AFM应用主要包括三个方面:生物细胞的表面形态观测;生物大分子的结构及其他性质的观测研究;生物分子之间力谱曲线的观测;从而以纳米级分辨率获得表面形貌结构信息及表面粗糙度信息;黑龙江原子力显微镜测试技术
当针尖与样品充分接近相互之间存在短程相互斥力时;郑州原子力显微镜测试联系方式
AFM可以用来对细胞进行形态学观察,并进行图像的分析。通过观察细胞表面形态和三维结构,可以获得细胞的表面积、厚度、宽度和体积等的量化参数等;例如,利用AFM可以对后的细胞表面形态的改变、造骨细胞在加入底物(钴铬、钛、钛钒等)后细胞形态和细胞弹性的变化、GTP对胰腺外分泌细胞囊泡高度的影响进行研究。利用AFM还可以对自由基损伤的红细胞膜表面精细结构的研究,直接观察到自由基损伤,以及加女贞子保护作用后,对红细胞膜分子形态学的影响。郑州原子力显微镜测试联系方式