航空航天轻量化注塑加工件,采用碳纤维增强聚酰亚胺(CFRPI)经高压 RTM 工艺成型。将 T700 碳纤维(体积分数 55%)预成型体放入模具,注入热固性聚酰亚胺树脂(粘度 500cP),在 200℃、10MPa 压力下固化 4 小时,制得密度 1.6g/cm3、弯曲强度 1200MPa 的结构件。加工时运用五轴数控铣削(转速 40000rpm,进给量 500mm/min),在 0.5mm 薄壁上加工出精度 ±0.01mm 的定位孔,边缘经等离子体去毛刺处理。成品在 - 196℃~260℃温度范围内,热膨胀系数≤1×10??/℃,且通过 1000 次高低温循环后,层间剪切强度保留率≥90%,满足航天器结构部件的轻量化与耐极端环境需求。这款绝缘件具有良好的阻燃性能,遇明火不易燃烧,保障设备安全。杭州新能源电池壳体加工件加工
高铁牵引变压器用绝缘加工件,需在高频交变磁场中保持低损耗,采用纳米晶合金与绝缘薄膜复合结构。通过真空蒸镀工艺在 0.02mm 厚纳米晶带材表面沉积 1μm 厚聚酰亚胺薄膜,层间粘结强度≥15N/cm,磁导率波动≤3%。加工时运用精密冲裁技术制作阶梯式叠片结构,叠片间隙控制在 5μm 以内,配合真空浸漆工艺(粘度 20s/25℃)填充气隙,使整体损耗在 10kHz、1.5T 工况下≤0.5W/kg。成品在 - 40℃~125℃温度范围内,磁致伸缩系数≤10×10??,且局部放电量≤0.5pC,满足高铁牵引系统高可靠性、低噪音的运行要求。电子外壳加工件定制加工绝缘加工件的表面粗糙度低,减少灰尘与湿气的附着,延长使用寿命。
在风力发电领域,绝缘加工件需适应高海拔强风沙环境,通常选用耐候性优异的硅橡胶复合材料。通过挤出成型工艺制成的绝缘子,邵氏硬度达 60±5HA,经 5000 小时紫外线老化测试后,拉伸强度下降率≤15%,表面憎水性恢复时间≤2 小时。加工时需在原料中添加纳米级氧化铝填料,使体积电阻率≥101?Ω?cm,同时通过三维编织技术增强伞裙结构的抗撕裂强度,确保在 12 级台风工况下,仍能承受 50kN 以上的机械拉力,且工频耐压值≥30kV/cm,有效抵御雷暴天气下的瞬时过电压冲击。?
半导体封装用注塑加工件,需达到 Class 10 级洁净标准,选用环烯烃共聚物(COC)与气相二氧化硅复合注塑。将 5% 疏水型二氧化硅(比表面积 300m2/g)混入 COC 粒子,通过真空干燥(温度 80℃,时间 24h)去除水分,再经热流道注塑(模具温度 120℃,注射压力 150MPa)成型,制得粒子析出量≤0.1 个 /ft2 的封装载体。加工时采用激光微雕技术,在 0.2mm 厚薄膜上雕刻出精度 ±2μm 的导电路径槽,槽壁粗糙度 Ra≤0.1μm,避免金属化过程中产生毛刺。成品在 150℃真空环境中放气率≤1×10??Pa?m3/s,且通过 1000 次热循环(-40℃~125℃)测试,翘曲量≤50μm,满足高级芯片封装的高精度与低污染要求。绝缘加工件可根据客户图纸定制,满足不同规格的电气绝缘需求。
航空发动机用耐高温注塑加工件,采用聚酰亚胺(PI)与碳化硅晶须复合注塑成型。添加 20% 碳化硅晶须(长径比 10:1)通过超声辅助混炼(功率 500W,温度 350℃)均匀分散,使材料在 300℃高温下的弯曲强度达 180MPa,热导率提升至 1.2W/(m?K)。加工时运用高压 RTM 工艺(注射压力 15MPa,温度 280℃),在涡轮增压器隔热罩上成型 0.8mm 厚的蜂窝状结构,蜂窝孔尺寸公差 ±0.03mm,配合气相沉积法(PVD)在表面制备 5μm 厚的二硅化钼涂层,耐氧化温度提升至 1200℃。成品经 1000 小时 300℃热老化后,失重率≤0.5%,且在发动机振动(振幅 ±1mm,频率 500Hz)测试中无开裂,为航空发动机的高温区域提供轻量化隔热绝缘部件。该绝缘件的厚度公差控制严格,确保电气间隙符合安全规范要求。杭州注塑加工件生产
防静电注塑件添加碳纤填料,表面电阻控制在 10?-10?Ω 区间。杭州新能源电池壳体加工件加工
新能源汽车驱动电机用绝缘加工件,需兼顾高转速下的耐电晕与耐油性能。以聚酰亚胺薄膜复合层压板为例,采用涂覆工艺将纳米陶瓷涂层与薄膜复合,使耐电晕寿命达普通材料的5倍(≥1000小时)。加工中运用激光打孔技术,孔径公差控制在±0.01mm,孔壁粗糙度Ra≤1.6μm,避免漆包线穿线时损伤绝缘层。成品经150℃热油浸泡1000小时后,拉伸强度保留率≥90%,且在100Hz高频脉冲电压(2000V)下,局部放电量≤1pC,有效解决电机高速运转时的绝缘老化问题。杭州新能源电池壳体加工件加工