convert/exp - 将trig 函数转换为指数函数convert/ln - 将arctrig 转换为对数函数polar - 转换为极坐标形式convert/radians - 将度转换为弧度convert/sincos - 将trig 函数转换为sin, cos, sinh, coshconvert/tan - 将trig 函数转换为tanconvert/trig - 将指数函数转换为三角函数和双曲函数第3章 求值3.1 假设功能3.2 求值Eval - 对一个表达式求值eval - 求值evala - 在代数数(或者函数)域求值evalb - 按照一个布尔表达式求值evalc - 在复数域上符号求值evalf - 使用浮点算法求值evalhf - 用硬件浮点数算法对表达式求值支持实时更新汇率等数据;部分软件还支持语音输入和播报功能。黄浦区怎样科学计算软件图片
《Maple 指令》7.0版本第1章 章数1.1 复数Re,Im - 返回复数型表达式的实部/虚部abs -***值函数argument - 复数的幅角函数conjugate - 返回共轭复数csgn - 实数和复数表达式的符号函数signum - 实数和复数表达式的sign 函数51.2 MAPLE 常数已知的变量名称指数常数(以自然对数为底)I - x^2 = -1 的根infinity 无穷大1.3 整数函数! - 阶乘函数irem, iquo - 整数的余数/商isprime - 素数测试isqrfree - 无整数平方的因数分解max, min - 数的最大值/最小值mod, modp, mods - 计算对 m 的整数模rand - 随机数生成器randomize - 重置随机数生成器虹口区特色科学计算软件服务电话学计算软件还在工程设计、金融分析、医学图像处理等领域发挥着重要作用。
Maple:用于符号计算和数值计算,适合数学建模和工程应用。Mathematica:强大的计算软件,适用于符号计算、数值计算和可视化。Julia:一种高性能的编程语言,专为科学计算而设计,具有良好的性能和易用性。COMSOL Multiphysics:用于多物理场仿真,适合工程和科学研究。ANSYS:用于工程仿真和有限元分析,广泛应用于机械、土木、航空等领域。SciLab:开源的科学计算软件,功能与MATLAB相似,适合数值计算和可视化。这些软件各有特点,选择合适的工具通常取决于具体的应用需求和个人的使用习惯。
强大的求解器★ 内置超过5000个符号和数值计**令,覆盖几乎所有的数学领域,如微积分,线性代数,方程求解,积分和离散变换,概率论和数理统计,物理,图论,张量分析,微分和解析几何,金融数学,矩阵计算,线性规划,组合数学,矢量分析,抽象代数,泛函分析,数论,复分析和实分析,抽象代数,级数和积分变换,特殊函数,编码和密码理论,优化等。★ 各种工程计算:优化,统计过程控制,灵敏度分析,动力系统设计,小波分析,信号处理,控制器设计,集总参数分析和建模,各种工程图形等。科学计算软件的应用范围广泛,几乎涵盖了所有需要精确计算的领域。
resultant - 计算两个多项式的终结式bernoulli - Bernoulli 数和多项式bernstein - 用Bernstein多项式近似一个函数content, primpart - 一个多元的多项式的内容和主部degree, ldegree - 一个多项式的比较高次方/比较低次方divide - 多项式的精确除法euler - Euler 数和多项式icontent - 多项式的整数部分interp - 多项式的插值prem, sprem - 多项式的pseudo 余数和稀疏pseudo 余数randpoly - 随机多项式生成器spline - 计算自然样条函数第8章 有理表达式8.0 有理表达式简介特点:界面简洁明了,功能布局合理,易于上手;虹口区特色科学计算软件服务电话
在工程设计领域,工程师可以利用软件进行结构分析、流体动力学模拟等,以优化设计方案制造成本。黄浦区怎样科学计算软件图片
1.4 素数Randpoly, Randprime - 有限域的随机多项式/首一素数多项式ithprime - 确定第 i 个素数nextprime, prevprime - 确定下一个比较大/**小素数1.5 数的进制转换convert/base - 基数之间的转换convert/binary - 转换为二进制形式convert/decimal - 转换为 10 进制convert/double - 将双精度浮点数由一种形式转换为另一种形式convert/float - 转换为浮点数convert/hex - 转换为十六进制形式convert/metric - 转换为公制单位convert/octal - 转换为八进制形式1.6 数的类型检查type - 数的类型检查函数第2章 初等数学2.1 初等函数product - 确定乘积求和不确定乘积黄浦区怎样科学计算软件图片
甘茨软件科技(上海)有限公司是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在上海市等地区的数码、电脑中汇聚了大量的人脉以及**,在业界也收获了很多良好的评价,这些都源自于自身的努力和大家共同进步的结果,这些评价对我们而言是比较好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同甘茨软件供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!