当陀螺仪应用到车载导航上它的作用体现在:陀螺仪在上立交桥时更灵敏准确的识别,民用GPS的精度是无法识别上没上立交桥的,而陀螺仪却可测出车子是否向上移动了,从而能让导航软件及时的修改导航路线。依靠GPS卫星的信号导航和陀螺仪的惯性导航,有效提高了导航精确度,即使在失去GPS信号后,系统仍能通过自主推算来继续导航,为车主提供准确的行驶指示。且而陀螺仪能够在方向和速度改变的瞬间即时测出,从而能让导航软件及时的修改导航路线。陀螺仪在空间站、卫星等航天器中,为姿态控制和轨道测量提供关键支持。抗震惯性导航系统
光纤陀螺仪的原理是利用光程的变化检测出两条光路的相位差,就可以测出光路旋转角速度,主要用于航空,航海,航天和国家防护工业和农业领域。微机电陀螺仪MEMS一般会用在手机等电子产品上,通常有两个方向的可移动电容板,径向的电容板加震荡电压迫使物体做径向运动,横向的电容板测量由于横向运动带来的电容变化,所以由电容的变化可以计算出角速度。所以,陀螺仪不光是用在手机里那么简单,大到航海,航空和航天,导弹、卫星运载器,国家防护等领域,并且地面设施、矿山隧道、地下铁路、石油钻探都离不开它。在生活中汽车导行,手机,环境监控等领域都需要陀螺仪的参与。海南惯导哪家好虚拟现实(VR)设备中,陀螺仪用于捕捉用户头部运动,提供沉浸式体验。
主要工作原理:角动量守恒定律,角动量守恒定律是指系统所受合外力矩为零时系统的角动量保持不变。角动量的定义:物体矢径和其动量的叉积:(1)矢量的计算:叉积和点积,假设a、b为两个矢量,之间的夹角为θ,则点积:a · b = abcosθ(标量),叉积:a x b = absinθ(矢量,方向由右手螺旋定则决定,四指由a弯向b,大拇指方向即为叉积方向)。(2)角动量计算:物体矢径和动量的叉积,r为矢径,数值为物体到旋转中心的距离,方向为旋转中心指向物体的方向矢量;p为动量,数值为物体质量与线速度的乘积p=mv,方向为线速度v的方向;以该图的方向为例,依据角动量公式,可以得到角动量L的方向为竖直向上。(3)陀螺的角动量守恒,假设一个陀螺不受空气阻力(合外力力矩=0),陀螺与地面的接触面无限小(矢径=0),则角动量的合力矩为0,即角动量守恒。
它主要特点:1、体积小、重量轻,其边长都小于1mm,器件主要的重量只为1.2mg。2、成本低。3、可靠性好,工作寿命超过10万小时,能承受1000g的冲击。4、测量范围大。一百多年以前,莱昂·傅科发明陀螺仪是为了科学研究。如今,这个小东西却让我们的生活有了翻天覆地的改变。陀螺仪器不只可以作为指示仪表,而更重要的是它可以作为自动控制系统中的一个敏感元件,即可作为信号传感器。根据需要,陀螺仪器能提供准确的方位、水平、位置、速度和加速度等信号,以便驾驶员或用自动导航仪来控制飞机、舰船或航天飞机等航行体按一定的航线飞行,而在导弹、卫星运载器或空间探测火箭等航行体的制导中,则直接利用这些信号完成航行体的姿态控制和轨道控制。陀螺仪通过实时监测角速度和方向变化,为航空航天等领域提供了关键的导航和控制支持。
下面,我们以单自由度陀螺仪为例,来解析角速度测量的原理。单自由度陀螺仪的简化模型如下图所示,其中x、y、z分别表示陀螺仪的三个轴。假设基座被固定在汽车上,y轴即为汽车的前进方向。当汽车绕y轴或z轴旋转时,内环起到了隔离运动的作用,陀螺转轴并不会随汽车转动而转动。但当汽车绕x轴转动时,内环上会产生一对力F,形成沿x轴方向的力矩mx。由于陀螺仪在x轴方向没有转动自由度,力矩mx将使陀螺主轴绕内环y轴进动。因此,通过测量y轴的角速度,我们可以间接测量到汽车在x轴的角速度。具体的建模和求解过程需要基于动量矩定理,这里不再详细展开。激光陀螺仪则利用光的干涉效应测量角速度,具有高精度和长期稳定性,在惯性导航和高精度测量中应用普遍。陕西轨检测量航姿仪
陀螺仪可以用于医疗设备的姿态稳定和运动追踪,提高手术的精确性和安全性。抗震惯性导航系统
普遍使用的MEMS陀螺(微机械)可应用于航空、航天、航海、兵器、汽车、生物医学、环境监控等领域。并且MEMS陀螺相比传统的陀螺有明显的优势:1.体积小、重量轻。适合于对安装空间和重量要求苛刻的场合,例如弹载测量等。2.低成本。3.高可靠性。内部无转动部件,全固态装置,抗大过载冲击,工作寿命长。4.低功耗。5.大量程。适于高转速大g值的场合。6.易于数字化、智能化。可数字输出,温度补偿,零位校正等。从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点,而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运动。抗震惯性导航系统